ASSOCIATION ANALYSIS AMONG YIELD COMPONENTS IN THE THREE GENERATIONS OF DURUM WHEAT

M.S. Mann, S.N. Sharma, D.L. Singhania and V.K. Bhatnagar

Deptt. of Plant Breeding and Genetics Rajasthan Agricultural University Agricultural Research Station Durgapura Jaipur (Rajasthan)

Correlation analysis between grain yield and its component traits were carried out in the three generations namely, parents, F_1 and F_2 developed by 10 \times 10 diallel cross (excluding reciprocals) in *durum* wheat. Among component characters grains per spike and tillers per plant would lead to higher yield in durum wheat. The antagonastic relationship between traits of economic importance suggested that intermating in early segregating generations for atleast 3-4 years need to be adopted. A multiple cross involving JNK-4W-14, A-9-30-1, Cocorit-71 and stork's' will be most appropriate to generate the variability in desirable direction for isolating valuable segregants with desirable attributes.

Key words: Durum wheat, correlation analysis, quantitative traits, generations, genotypic and phenotypic coefficient

Grain yield is the end product of interactions of many factors known as yield contributing components and is a complex trait. Selection based on this trait is usually not very useful but the one based on its component characters could be more effective. To make effective selections for higher yield, basic information on major yield contributing characters is essential to ensure efficient selection simultaneously for two or more characters. In case of *aestivum* wheat, number of findings based on fixed genotypes and segregating populations have been reported but there is very little information in *durum* wheat on correlation studies particularly in segregating populations. Therefore, the present study was conducted to collect the information on association of ten quantitative traits, with grain yield in parents, F₁ and F₂ generations of *durum* wheat.

MATERIALS AND METHODS

Ten varieties of durum wheat (*Triticum durum* Desf.) viz. Raj 1516, HD 45530, NP 401, Cocorit 71, Flamingo's, Stork 'S', Raj 911, A-9-30-1, Raj 2061 and JNK-4W-184, were crossed in all possible combinations excluding reci

procals. The resulting 45 F_1 's were planted to get sufficient F_2 populations these along with parents were evaluated in a randomized block design with three replications at ARS, Sriganganagar. Each plot consisted of single 5m long row in parents and F_1 's while four rows in F_2 's with the spacing of 30cm between rows and 10cm between plants. Recommended cultural practices were followed for raising the crop. Ten competitive plants in each parent and F_1 's and 25 plants in each F_2 's progeny were selected randomly for recording observations on eleven quantitative characters. The progeny means were used for statistical analysis. Genotypic and phenotypic correlation coefficients were calculated in parents, F_1 and F_2 populations separately according to the procedure proposed by Searle (1961).

RESULTS AND DISCUSSION

From the analysis of variance, the mean squares due to genotypes were found highly significant for all the eleven characters studied indicating sufficient genetic variation among genotypes for all three characters in all the three populations. There were similarities between genotypic and phenotypic coefficient of correlation though the genotypic correlation coefficients were, in general, higher than the corresponding phenotypic correlation coefficients in all the three generations (Table 1). This suggested that selection on phenotypic basis would be equally worthwhile. Grain yield was significantly and positively correlated with number of tillers, spikelets per spike, grains per spike and straw yield in the parents, F₁ and F₂ generations. However, it showed positive and significant association with spike length and plant height in F₂ population also and are in accordance with earlier reports in wheat (Dhomkshes Rao, 1979; Gupta and Ahmed, 1979; Kumar, 1979; Choudhary et al., 1985; Sharma and Kant, 1986; Verma and Yunus, 1993; Srivastava et al., 1993; Chander et al., 1993). In general, there were similarities in association between characters in different generations however some differences of associations of traits in different populations may be due to the differences of genetic constitution of the different populations.

Harvest index showed positive but weak association with grain yield in parents and F₁ generations, however, it showed positive and significant association with it in F₂ generation, it may be ascribed to the breakage of linkages and heterogenous nature of population. This character also showed positive and significant correlation with grains per spike in all the three generations and with number of tillers in F₂ population only. Therefore, improvement in grain yield may be made by this trait. Earlier Studies (Kaltsikes and Lac, 1971; Sidhu *et al.*, 1976; Pace *et al.*, 1978; Thakal *et al.*, 1979; Kumar and Choudhary, 1986; Sharma *et al.*, 1993) substantiate this point.

Table 1. Phenotypic (p) and genotypic (G) correlation among different characters of the parents (P), F_1 and F_2 population in durum wheat

							<u> </u>		•			
Charac- ters			Days to matu- ity	Plant hei- ght (cm)	Num- ber of tillers	Spike length (cm)	Spikelets per spike	grai- ns per- spike	1000 grain weight (g)	Grain yield per plant (g)	Straw yield (g)	Harvest index (%)
Days to heading	P	P	0.62**	0.42*	0.09	0.75**	0.57**	0.11	-0.18	0.22	0.37*	-0.30
_		G	0.66	0.42	0.17	0.81	0.60	0.12	-0.19	0.29	0.43	-0.31
	Fı	Р	0.68**	0.35**	-0.08	0.50**	0.48**	0.01	0.04	0.01	0.34**	-0.21*.
		G	0.78	0.38	-0.10	0.59	0.54	0.01	0.05	0.03	0.45	0.27
	F ₂	P	0.73**	0.35**	0.07	0.63**	0.62**	0.14	-0.18*	0.17*	0.47**	-0.42**
		G	0.85	0.38	-0.02	0.72	0.68	0.15	-0.18	0.16	0.60	-0.54
Days to maturity	P	P	0.16	0.05	0.46*	0.28	-0.47**	0.36	-0.80	0.52**	-0.32	
		G	0.19	0.04	0.54	0.32	-0.52	0.42	-0.90	0.64	-0.76	
	F_t	Р	0.01	-0.01	0.38**	0.28**	-0.16	0.22	0.02	0.28**	-0.15	
•		G		0.02	-0.18	0.45	0.36	-0.23	0.15	12	0.25	-0.21
	F_2	Р	0.11	0.04	0.41**	0.41**	-0.06	-0.04	0.07	0.40**	-0.40**	
		G		0.15	-0.08	0.58	0.54	-0.08	-0.04	-0.04	0.46	0.34
Plant height (cm)	þ	P			-0.28	0.50**	0.41*	0.30	0.19	0.29	0.57**	-0.46*
		G			-0.43	0.54	0.45	0.32	0.18	0.34	0.64	-0.51
	Fı	Р			0.07	0.58 **	0.59**	0.21*	0.24**	0.32**	0.,59**	-0.21*
		G			0.06	0.64	0.64	0.24	0.27	0.40	0.73	-0.30
	F_2	P			0.04	0.40**	0.40**	0.26**	0 01	0.35**	0.59**	-0.38**
		G	· .	-0.01	0.46	0.47	0.27	0.03	0.44	0.74	0.50	
Numbers of tillers	P	Þ				0.12	0.31	0.31	-0.48**	0.63**	0.11	0.22
		G				0.05	0.41	0.39	-0.58	0.51	-0.17	0.31
	Fı	P				0.21**	0.17*	0.33**	-0.17*	0.81**	0.52**	0.10
		G				0.15	0.10	0.53	-0.33	0.79	0.34	0.17
	F ₂	P				0.06	0.12		-0.44**	0.69**	0.26**	0.48**
		G				-0.02	0.13	0.43	-0.65	0.60	-0.06	-0.40
Spike length (cm)	Р	P					0.73**	0.15	-0.17	0.21	0.48**	-0.33
		G					0.78	0.18	-0.13	0.24	0.50	-0.41
	$\mathbf{F_t}$	P					0.60**	0.08	0.24**	0.35**	0.55**	-0.16
		G					0.63	0.06	0.20	0.36	0.64	-0.25

(Contd. to next page)

Spikelets	F ₂	Р	 							
Spikelets					0.66**	0.08	-0.13	80.0	0.40**	-0.40**
Spikelets		' G			0.72	0.05	-0.12	0.05	0.47	-0.45
Spikelets per spike	P	P			0.49**	-0.35	0,53**	0.35	0.19	
		G				0.55	-0.35	0.67	0.45	-0.26
	\mathbf{F}_1	Р				0.30**	0.04	0.39**	0.54**	-0.12
		G				0.31	0.10	0.40	0.61	-0.22
	1:2	P				0.34**	-0.39**	0.21*	0.38**	-0.27**
		G				0.44	0.47	0.25	0.46	-0.31
	P	P					-0.67**	0.72**	-0.06	0.42*
Grains per spike		G					-0.72	0.81 -	-0.09	0.51
	F_1	P					-0.43	0.51**	0.21*	0.30**
		G					-0,60	0.65	0.26	0.24
	F_2 .	P					-0.55**	0.57**	0.19	0.25**
		G					-0.69	0.71	0.13	0.36
1000 grain weight (g)	P	P						-0.36	0.49**	-0.73**
		G						-0.43	0.57	-0.80
	\mathbf{F}_1	P						-0.01	0.31**	-0.18
		G						-0.08	0.40	-0.29
	F_2	p						-0.27	0.09	-0,33**
		G						-0.36	0.20	-0.46
Grain yield per plant (g)	P	P							0.40*	0.16
		G							0.34	0.02
	\mathbf{F}_{1}	P							0.68**	0.01
		G							0.66	0.06
	F_2	P		•					0.48**	0.26**
		G							0.41	0.19
10. Straw yield	P	P								-0.74**
		G								0.89
	\mathbf{F}_1	P								-0.23**
		G	•							-0.29
	F_2	P								-0.64**
		G	 							-0.70

^{*} P = 0.05, ** P = 0.01

Grain weight exhibited negative correlation with yield in all three generations, however, it was significant in case of parents and F_2 population. This character also had negative and highly significant correlation with number of

tillers and grains per spike (Sharma and Kant, 1986). Therefore, simultaneous improvement for these traits would not be feasible unless unfavourable linkage are broken by intermating in the segregating populations.

Number of tiller per plant had no significant correlation with spike length, spikelets per spike and grains per spike in parental lines but there were significant positive association of tillers with these traits in F₁. In F₂ population, tiller number showed positive and highly significant correlation with grains per spike. Therefore, simultaneous selection for such traits in genetically variable population may lead to the improvement of grain yield.

In conclusion, correlation studies revealed that selection for grains per spike and tillers per plant would lead to higher yield. The antagonistic relationship between traits of economic importance suggested that intermating in early segregating generations for atleast 3-4 years be adopted. Intermating would enhance the frequency of desirable combination of genes in the segregating population. For this purpose, a multiple cross involving JNK-4W-184, A-9-30-1, cocorit 71 and stork's will be most appropriate in present material. The material generated after intermating may offer great scope for isolating valuable segregants with desirable attributes in *durum* wheats.

ACKNOWLEDGEMENT

The authors are thankful to the Director of Research, Rajasthan Agricultural University, Bikaner for providing necessary facilities during the course of investigation.

REFERENCES

- Chander, S., R.P. Srivastava and Mohd. Yunus. 1993. Path analysis in intermated populations of wheat. *In*: Proc. National Symp. Indian Society of Genetics & Pl. Breeding, Dec., 25-27, 1993, Aurangabad.
- Choudhary, R.K., R.S. Paroda and B.P. Singh. 1985. Drought resistance in wheat. Grain yield response and its correlations with grain yield components. *Genet. Agron.* (in press).
- De Pace, C., E. Ottaviano and G. Pacvcci. 1978. Genetic analysis of yield components in durum wheat. *Genet. Agren.* 32(2): 125-138.
- Dhomkshe, B.L. and M.V. Rao. 1979. Gene systems governing yield and its components characters in durum wheat. *Indian J. Genet.* 39(3): 396-491.
- Gupta, R.P. and Z. Ahmad. 1979. Genetic parameters in macaroni wheat. *Indian J. Genet.* 39: 263-270.
- Kaltsikes, P.J. and J. lec. 1971. Quantitative inheritance in durum wheat. Can. J. Genet. Cytol. 13: 210-218.
- Kumar, A. and R.K. Chowdhary. 1986. Studies on biological yield and harvest index in durum wheat. WIS, 61: 77-79.

- Kumar, D. 1979. Correlation and path coefficient analysis in wheat. *Madras Agric. J.* 66(7): 455-458.
- Searle, S.R. 1961. Phenotypic, genotypic and environmental correlations. *Biometrics* 17: 474-480
- Sharma, S.N. and B.K. Kant. 1986. Genetic Variability, Correlation and path analysis for yield and related variable in hybrid population of wheat. *Indian J. Agric. Res.* 20(1): 21-26.
- Sharma, S.N., R.K. Sharma and V.K. Bhatnagar. Genetic analysis of harvest index in durum wheat. *In*: Proc. National Symp. Indian Society of Genetics & Plant Breeding. Dec. 25-27, 1993, Aurangabad.
- Sidhu, G.S., K.S. Gill and B.S. Ghat. 1976. Correlation and Path coefficient analysis in wheat. *J. Res. PAU.* 13(3): 255-260.
- Singh, V.P., R.P. Singh and R. Singh. 1993. Correlation and Path coefficient analysis in wheat under rice wheat under rice wheat system. *In*: Proc. National Symp. Indian Society of Genetics & Plant Breeding. Dec. 25-27, 1993, Aurangabad.
- Srivastava, R.D., S.R. Verma, A.S. Redhu and R.A.S. Lamba. 1993. Selection in F₂ intermated wheat populations. *In*: Proc. National SYmp. Indian Society of Genetics & Plant Breeding. Dec. 25-27, 1993, Aurangabad.
- Thakal, S.K., O.P. Luthra and R.K. Singh. 1979. Genetics of harvest index viz. viz. biological and grain yield. *Cereal Res. Commu.* 7: 153-159.
- Verma, S.R. and Mohd. Yunus. 1993. Breaking linkage blocks through intermating between yield component traits inbred wheat. *In*: Proc. National Symp. Indian Society of Genetics & Plant Breeding. Dec. 25-27, 1993, Aurangabad.