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Elevated temperature can interfere with pollen formation and function in okra (Abelmoschus esculentus). The 
study was aim to quantify the impact of elevated temperatures on the reproductive stage in okra. In both the 
stain analysis and pollen tube growth test, pollen viability was decreased at elevated temperatures. The highest 
number of non-viable pollen grains were observed at 35°C and 40°C. The stigma was nonsignificantly high in 
receptivity at all temperatures; however, the seed set showed a significant decline under elevated temperatures. 
The findings offer the potential to look further into approaches, to genetic enhancement of heat-tolerant plants 
that will secure okra productivity during future climatic variation. 
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Introduction
The rise in temperature due to global warming is a 
concern in many parts of the world (Anderson et al., 
2017; Feng et al., 2017; Lobell and Asseng 2017). A 
report said, a 2°C increase would greatly exacerbate 
extreme weather, rising sea levels, loss of ecosystems, 
arctic melting, and other impacts (Anonymous, 2018). 
Even if governments were to implement their pledges 
fully, the world would face a rise in mean temperatures 
of 2.4 to 3.8°C by 2100. Elevated temperature caused 
an adverse impact during specific development of pre-
zygotic and post-zygotic stages in okra (Abelmoschus 
esculentus L. Moench) (Ganpat and Isaac, 2015; 
Müller et al., 2016 and Broussard et al., 2017). Sexual 
reproduction of okra is sensitive to elevated temperature 
with reproductive tolerance up to 30 to 32°C (Arulrajah 
and Ormrod, 1973; Mangrich and Saltveit, 2000; 
Rahman et al., 2012). Increased temperature caused 
adverse effects on seed set, which results in reduced 
seed dormancy and final seed yield due to alteration in 
floral development (Hoque et al., 2016; Balasubramanian 
et al., 2006; Oloumi and Rezanejhad, 2009). Responses 
may differ significantly between ecotypes of the same 
species (Madan et al., 2012; Huang et al., 2014). While 
temperature sensitivity has been extensively studied 
using leaves and roots (Iba, 2002; Yamaguchi-Shinozaki 
and Shinozaki 2006, Kotak et al., 2007; Wahid et al., 

2007; Aubry-Kientz et al., 2019). Studies on sexual 
reproduction are more complicated because gamete 
development and fertilization are complex processes 
occurring during a short period, and predominantly 
hidden within the flower. Pollen-pistil dynamics under 
elevated temperature in okra requires elucidation. The 
study was undertaken to determine the influences of 
elevated temperature on pollen-pistil dynamics and seed 
formation in okra.

Material and Methods
Okra seed, cv. Clemson Spineless (CS), was obtained 
from the National Agriculture Research and Extension 
Institute (NAREI), Guyana, South America. On the 
Sixteenth day of September seeds pretreated with 
pesticides were sown into the potting mix soil in the 
germination tray. Water was provided immediately 
after sowing and then every day in the morning and 
afternoon until plants were 21 days old. While seedlings 
were developing seedbeds under the shade house were 
measured and arranged in a completely randomized 
design (CRD) with 3 replications of 4 treatments on 12 
plots, the beds are denoted as plots. Soil preparation of 
the plots included the incorporation of poultry manure 
where 25 kg of manure per plot were added and mixed 
with the soil, then allowed to rest for 5 to 7 days before 
planting. All recommended agronomic practices were 
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followed to raise the right crop. Soon the plots were 
ready for planting. 
 Developed seedlings in the germination tray were 
transplanted onto the prepared CRD plots inside the 
shade house on the sixth day of October. In each plot, 
seedlings were planted in double rows with 6 plants 
in a row, 12 plants per plot, with a spacing of 88 
cm within the row and 90 cm between rows (Olczyk  
et al., 2005, 2006). Plots were 5m2 (5.0×1.0 m). Plants 
were watered immediately after transplanting and then 
continuously watered every morning and afternoon until 
plants matured and research was completed. 
 Pollen viability was determined with the Carmine 
Acetic Acid (CAA) stain using mature anthers (Sheidai 
and Fadaei, 2005). Carmine acetic acid stain was prepared 
by boiling a 40% acetic acid solution saturated with 
carmine. Flowers were harvested during morning hours 
and incubated for 2 h at 25 (control), 30, 35, or 40°C. 
Pollen grains were dusted onto a slide containing 1-2 
drops of CAA stain, allowing immersion of pollen in 
the stain for 20-30 min. Viability was determined by 
counting darker stained pollen (viable), non-stained, or 
lightly stained and ruptured pollen (non-viable), using 
an OPTIKA Compound Light microscope (Ponteranica, 
Italy) at 400× magnification.
 Each morning, freshly opened flowers and buds one 
day after anthesis were harvested and incubated at each 
temperature treatment for 2 h. Placing un-dehisced anthers 
in incubators allowed anthers to dehisce exposing pollen 
grains. Temperature treated pollen was cultured onto basic 
pollen germinating medium (PGM) for 1 h. A slightly 
modified in-vitro pollen growth medium (Li et al., 1999) 
was prepared which contained 0.01% boric acid; 5 mM 
calcium chloride; 5 mM potassium chloride; and 1 mM 
magnesium sulfate. The pH 7.5 was maintained with 
1M potassium hydroxide and 20% sucrose for the solid 
medium as a source of carbohydrate and 1.5% agarose for 
solidification of media. Pollen germination was observed 
with the OPTIKA Compound Light microscope. Pollen 
grains were considered to have germinated, or be viable 
when the pollen tube had gained a length equal to, or 
longer than, the diameter of the pollen grain. Bursting 
pollen grains were categorized by an irregular mass of 
cytoplasm and starch grains protruding from the cells 
(Adhikari and Campbell, 1998; Kakani et al., 2002).
 Stigma receptivity was determined in 40 flowers 
from all replicates where flowers were emasculated 1 

day before anthesis. Immediately after emasculation, 
the flowers were placed within paper bags to prevent 
unwanted pollination. Receptivity of stigma was studied 
the next day (day 2). Emasculated flowers were harvested 
during morning hours and placed in an incubator for 
2 h at 25, 30, 35, or 40°C. After removal from the 
incubator; the stigma surface was cut with a sharp razor 
blade, and 6% hydrogen peroxide solution (H2O2) was 
applied on the cut (decapitated) surface with a dropper. 
The appearance of bubbles within 2 to 3 min on the 
stigma surface indicated it was receptive, according to 
the methodology proposed by Silva et al., 2013 and 
Gupta et al., 2015.
 Approximately 20 mature unopened flowers per 
replicate of all treatments were hand-emasculated 
a day before hand-pollination. Emasculated flowers 
were covered in paper envelopes to prevent unwanted 
pollination. The next morning between 8.00 and 10.30 
am, open flowers and dehisced anthers were collected and 
brought to the laboratory; where the flowers with exposed 
pollen grains were treated at 25, 30, 35, and 40°C for 
2 hours. On the same day, the flowers were artificially 
pollinated by dusting with temperature-treated pollen, 
collected from incubated flowers, directly onto the stigma 
surface of the emasculated flowers. Pollinated flowers 
were bagged, and set aside to determine if fertilization 
occurred. Pistils were left on plants until maturity to 
determine seed sets with continuous monitoring. On 
day 12 following pollination, mature fruit was collected, 
and the seed set was counted. Statistical analysis was 
conducted using Analysis of Variance (ANOVA) in 
Statistics 10.

Results and Discussion

Pollen viability and germination
To test whether high-temperature influences pollen 
viability in A. esculentus, temperature-treated pollens 
were stained with carmine acetic acid. Consequently, a 
higher number of lightly stained, unstained, and ruptured 
pollen was noted for higher temperature treated pollen. 
In contrast, the proportion of darkly stained pollen was 
noted higher in number at ambient temperature treatment 
of 25°C. Hence overall pollen viability was recorded, 
substantially lower for increased temperatures, with 
a mean percentage of 70.1% at 40°C with 74.98% at 
35°C and 79.8% at 30°C, respectively (Fig. 1a). On 
the contrary, at an ambient temperature of 25°C mean 
percentage was 82.0%, respectively. This suggested 
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that there was a significant effect of high temperature 
(P <0.05) on pollen viability. The highest temperature 
(40°C) showed the least viable pollen grains, while the 
control (25°C) had the highest count of viable pollens. 
The highest pollen germination rates for the A. esculentus 
were detected (i.e. 60.02%) at an optimal temperature of 
25°C (control). The germinability decreased to 55.28% 

at 30°C, 49.02% at 35 ºC, and 40.1% at 40°C (Fig.1b). 
Darkly stained pollen is regarded as highly viable, 
while the lightly stained or unstained, or ruptured were 
considered non-viable (Fig. 2a-c). Pollen germination 
percentage was calculated as the proportion of pollen 
grains germinated to the total number of pollen grains 
observed (Fig. 3 a-b). Analysis of variance (ANOVA) 

Fig. 1. Temperature effect on pollen viability: pollens in CAA stain (a) and pollen growth medium PGM (b)
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Fig. 2. Pollen viability of A. esculentus stained with CAA, non-viable (unstained) pollen (a), viable pollen (darkly stained) (b), 
and both viable and nonviable (C).

Fig. 3. In-vitro pollen tube elongation of viable and non-viable pollen of A. esculentus on pollen germination medium observed 
under the compound microscope (a) and (b) 
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showed that the higher temperatures had significant 
effects on pollen tube elongation, reducing pollen viability 
(P < 0.05). It is widely accepted that sexual reproduction 
in plants is highly vulnerable to temperature (Hedhly et 
al., 2003; Hedhly et al., 2009). The greatest sensitivity 
to an elevated temperature at early reproductive stages 
found in this study was declined pollen viability in stain 
test and in-vitro pollen germination of okra with reduced 

seed set. As many studies had shown pollen viability 
in the number of crops such as tomatoes (Müller et 
al., 2016), Arabidopsis (Huang et al., 2014), rice (Liu 
et al., 2004), and peach (Herrero and Arbeloa, 1989) 
is reduced at elevated temperatures. Earlier studies on 
cotton pollen have shown that temperatures (>30°C) 
inhibit in-vitro pollen growth and pollen tube penetration 
into pistil structures (Barrow, 1983; Kakani et al., 2005). 

Fig. 4. Stigma receptivity (a) and seed set (b) under different temperature treatments. For (a) the p-value = 0.8018; with no 
significant difference in stigma receptivity with an increase in temperature. For (b) the p<0.05 with a significant difference in 
seed set with an increase in temperature.
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In the current study, a significant percentage of pollen 
viability was observed amongst varied temperatures 35 
to 40°C showed reduced viable pollens with deteriorated 
microspore cytoplasmic contents, which appeared as 
lightly stained or unstained. The percentage for non-
viability in pollen was recorded, 70.1, 74.9, and 79.8% 
at high-temperature, 40, 35, and 30°C respectively, 
compared to control that showed viability percentages 
of 82.01% with darker stained pollens. In-vitro 
pollen germination n showed reduced pollen viability 
percentage, 55.21, 49.0, and 40.1% at temperatures 30, 
35 to 40°C respectively. That contributes to a much 
lower proportion of pollen tube elongation; considerably 
tube length had not exceeded the substantial diameter of 
the pollen. On the contrary, it was found that dynamic 
tube elongation at 25°C of temperature having 60.02%. 
Therefore, the higher temperatures had a significantly 
negative impact on the feasibility of male gamete and 
consequently hindered the reproductive processes in 
plants reducing yield.

Stigma receptivity 
The analysis of variance (ANOVA) showed that various 
temperatures of, 25, 30, 3,5 and 40°C respectively had no 
significant effect on stigma receptivity (P>0.05) (Fig. 4a). 
Generally, all-temperature treated samples had a similar 
trend, i.e., 91, 91, 91, and 90% for 25, 30, 35, and 40°C, 
respectively. In all the analyzed flowers, stigma was fully 
receptive. Oxygen bubble formation within 1-3 minutes 
observed on the stigmas was considered receptive (Fig. 
5a). Elevated temperatures had no significant effect on 
stigma receptivity. All different temperatures i.e., 25, 
30, 35, and 40°C recorded a receptivity percentage of 
stigma ranging between 90–91%. For instance, pollen has 
been reported to be more sensitive to higher temperatures 
than female reproductive structures (Balasubramanian 
et. al., 2006). However, the effects of high temperature 
on female fertility could not be disregarded (Mangrich 
and Saltveit, 2000; Porch and Jahn, 2001). The previous 
report revealed that exposure to a high-temperature 
response in snap bean did not significantly affect stigma 
receptivity (Dickson and Boettger, 1984). Studies with 
Indian mustard (B. juncea) suggested vulnerability in 
stigma receptivity when exposed to high temperature 
during at flowering stage (Maity et al., 2019).

Seed Set
The temperature had a more significant effect on the 
seed-set; with the lowest seed set of 40.1% that was 

obtained under an elevated temperature of 40°C followed 
by a 5°C temperature treat with mean having 61.23% 
seed set (Fig. 4b). Seed-set was reduced by increased 
temperatures with a significant relationship between 
seed set and elevated temperature (P < 0.05) (Fig. 5b-
c). It was evident that the highest seed set (84.21 %) 
was found under ambient temperature (25°C) treatment 
followed by treatments under 30°C of temperature 
(70.9%). Likewise, higher temperatures also instigated 
bell shape fruit formation (Fig. 5d). The result indicated 
that the elevated temperature decreased seed set count and 
allowed the deformation of fruits. There was an obvious 
negative relationship obtained between temperature and 
seed set. The effects of temperature above the critical 
temperatures (35/40°C) had recorded a reduced seed set 
supported by the previous studies showed a reduction 
in pollen viability and seed set in beans (Monterroso 
and Wien, 1990; Gross and Kigel, 1994). In our study, 
there was no effect on the fertilization process and seed 
set at 25°C; however, the seed set number decreased 
as temperature increased above 30, 35 to 40°C. 
Interestingly, fruits produced at temperatures 35 and 
40°C were noticed to have taken bell-shaped and did 
not have fully developed seeds. Thus, it is determined 
that after exposure to temperatures 30, 35, and 40°C, 
respectively, there were fewer pollen grains per flower 
that remained viable. Consequently, studies suggested 
that reduced seed-set at higher temperatures is likely a 
result of lower anther dehiscence and pollen sterility 
(Monterroso and Wien, 1990; Gross and Kigel, 1994). 
Homogenous effects on pollen development and fruit-
set have been observed in peanut (Prasad et al., 2002, 
2003), cowpea (Hall, 2004), and tomato (Peet et al., 
1998). Generally, plant response to high temperature was 
found to be most severe during periods of rapid growth 
and development (Hoque et al., 2016). Little tolerance 
of pollen development to heat stress has been reported 
in Chinese cabbage (Kuo et al., 1981) and bottle gourd 
(Iapichino and Loy, 1987). Gibberellin regulates floral 
developments (Gupta and Chakrabarty, 2013) thus; an 
increase in temperature leads to GA-deficiency that 
caused flower mutation typically having short stamens as 
a result of reduced cell extension within the filaments the 
lowest pod set was observed in snap bean when flower 
buds were exposed to heat, which gradually decreased 
floral development affecting young pods and seed-set 
rate (Dickson and Boettger, 1984). 
 The elevated temperature adversely affects the male 
reproductive phase in A. esculentus, which is amongst 
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the most susceptible process displaying negative impacts 
on plant fertility, leading to declined seed set and 
deformity in fruit formation at (>35°C) exhibiting reduced 
male fertility. In contrast, stigma receptivity indicated 
consistency tolerance to merely all temperatures. 
This study also reports a better understanding of the 
okra plant’s capability to cope with heat stress during 
reproductive development. To identify potential genetic 
traits, thus implementing strategies to improve plant heat 
stress tolerance. This study also delineates the benefits to 
forestry and agricultural practices shortly as increasing 
temperatures pose threats to production yield.
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