
Abstract
Drought, being a devastating abiotic factor, affects the productivity of many crops. Being a climate-resilient crop, pearl millet’s adaptability 
towards arid regions attracts us to examine morpho-physiological and molecular mechanisms during seedling drought stress. The 
experimental material consisted of 41 genotypes subjected to drought stress at the seedling stage. Significant differences for morpho-
physiological traits such as SL, R/S, RWC, RL (except treatments), and WRC (except-G×T interaction) were observed. Two tolerant and 
two susceptible genotypes were selected based on RWC under drought conditions. A set of seven genes (ST, NAC, 26S, TD, WD-40, GAUT 
and ASR) of drought-related pathways were selected and their expression patterns were analyzed in these genotypes. The expression of 
drought-related genes was in confirmation with the morpho-physiological traits. Our study suggests that drought screening at the early 
seedling stage for morpho-physiological traits will aid the breeders in the development of drought-tolerant parental lines and hybrids.
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Introduction
Plants, being sessile, are constantly exposed to different 
environmental stresses. Among all the abiotic factors, drought 
is the most important devastating stress that influences plant 
growth and development. The effect of drought on the plants 
depends upon the changes in climate conditions and level of 
water scarcity (Bohnert et al., 1995; Kaya et al., 2006). The impact of 
drought on crop development depends on the severity and stage 
of the plant development. Sensitive stages of the plant are more 
prone to face damage (Bayoumi et al., 2008). Apart from facing the 
effects of drought, plants also develop numerous acclimatization 
and adaptive strategies to overcome drought stress, which range 
from simple morphophysiological traits that serve as markers for 
stress tolerance to major upheavals in gene expression in which 
a large number of genes and transcription factors are involved 
(Bhargava and Sawant, 2013). Transcriptional factors modulate 
gene expression by binding through cis-regulatory regions in the 
promoter regions of stress-related genes. Drought-induced gene 
expression is governed by ABA-dependent and ABA-independent 
pathways and there is a crosstalk between these pathways in 
signal transduction by activating a number of TFs and genes 
(Yoshida et al., 2014; Joshi et al., 2016). The activation of the signal 
transduction pathways along with biochemical, morphological, or 
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physiological changes in plants are responsible for tolerance 
of the genotypes under water stress conditions. So, a better 
understanding of the interrelation between molecular 
mechanisms and physiological traits is necessary.

In arid and semi-arid regions of the world mainly Asian 
and African countries, crop productivity is being limited by 
water scarcity (Kholová et al., 2010; Yadav et al., 2017). In these 
regions, climate-resilient crops like pearl millet (Pennisetum 
glaucum) are being cultivated. It is a small-grained 
panicoid millet with a chromosome complement of 2n = 
14 with genomic size of ~1.7Gb. It is a diploid and highly 
cross-pollinated crop (Varshney et al., 2017; Jaiswal et al., 
2018) and the sixth most important crop after rice, wheat, 
maize, barley and sorghum (Vadez et al., 2012). It plays a 
vital role in food security in Sub-Saharan countries as it is 
a nutrient-rich crop (Belton and Taylor, 2004; Varshney et 
al., 2017; Debieu et al., 2018). Though pearl millet is known 
for its tolerance to drought, still its sensitive stages of the 
crop, like the seedling and terminal growth stages, are still 
being affected by water-deficient conditions (Yadav et al., 
2011; Shivhare and Lata, 2017). Therefore, screening for 
drought tolerance can be done at the sensitive stages of 
the plants to obtain better-performing parental lines and 
hybrids. Studies in wheat indicated a higher relationship 
between the seedling traits and stem-related traits of 
adult plants (Dodig et al., 2015) and a positive correlation 
between the seedling root length and grain yield (Abdel-
Ghani et al., 2013). Hence, screening of genotypes at the 
seedling stage by using respective traits was considered 
to be a cost-effective approach and rapid screening of 
genotypes can be achieved by the breeders (Badr et al., 
2020). Keeping the above in view, the present study was 
undertaken for assessing the pearl millet genotypes for 
drought tolerance at the early seedling stage and to analyze 
the inter-relationship between the physiological traits and 
molecular mechanisms. 

Materials and Methods
The 41 pearl millet genotypes (B and R lines) obtained from 
the ICRISAT, Hyderabad, were screened for their drought 
tolerance in 2019-2020 on the basis of morpho-physiological 
traits.

Experimental Design
The seeds were surface sterilized and sown in plastic glasses 
filled with autoclaved red soil and allowed to germinate until 
the third leaf emergence. The experiment was carried out 
in two treatments, i.e., control and water-stressed (drought) 
conditions and three replications. Water was withheld for 
the plants grown under drought conditions (at the 11th DOS) 
while control was watered daily till the drought symptoms 
(wilting and slight yellowing of leaves) were noticed (15 DOS). 
The plants were removed for recording physiological traits 
data and total RNA isolation for gene expression studies.

Physiological Traits
Root length (RL) and shoot length (SL) data were noted in 
centimeters. The root/shoot length (R/S) ratio was obtained 
by dividing root length by shoot length. Relative water 
content (RWC) of seedlings subjected to drought and control 
was measured as per the procedure of Barrs and Weatherley 
(1962). The RWC of the samples was calculated as per the 
following formula:

RWC = (Fresh weight-Dry weight)/(Turgid weight-Dry 
weight) × 100

The chlorophyll stability index (CSI) was estimated using the 
method of Koleyoreas (1958) in both control and drought 
samples continuously for 3 days after withholding water by 
SPAD 502 chlorophyll meter.

CSI= (Total chlorophyll content of stressed plant)/(Total 
chlorophyll content of plant) ×100

Water retention capacity (WRC) was calculated as per the 
procedure of Sangakkara et al. (1996) in control and drought 
samples by the formula

WRC= Turgid weight/Dry weight. 

Statistical Analysis
Two factorial completely randomized designs were 
performed to find out the significant differences among the 
genotypes, treatments, genotypes  treatments interaction 
of the traits using Infostat software. Correlation analysis 
was performed using Pearson’s correlation method to find 
out the strength of the relationship among all the traits 
(SPSS_v20 software).

Gene Expression Studies
The total RNA was isolated using a NucleoSpin RNA Plant kit 
(Macherey-Nagel). cDNA synthesis was carried out using a 
cDNA synthesis Kit (Genetix, USA). The transcriptional factors 
and genes that cover ABA-dependent and ABA-independent 
MAPK pathways sequences were downloaded from the 
pearl millet drought transcriptome database (PMDTDb) 
developed by Jaiswal et al., 2018 and primers were designed 
using Primer 3 software (Table 1). β-actin served as internal 
control. The PCR products were detected by running on a 3% 
agarose gel. Gene expression was calculated by capturing 
the fluorescence intensity of agarose gel by using Image 
Lab Software. The relative gene expression (fold change) is 
calculated as a ratio of the mean value of normalized gene 
expression under drought to that of control.

Result and Discussion
To develop superior hybrids with drought tolerance, it is 
necessary to screen the parental lines and utilize them in 
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breeding programs. Differential responses of genotypes 
to drought at the seedling stage could be utilized and 
exploited by the plant breeders to identify drought-tolerant 
genotypes before performing comprehensive field studies. 
Drought screening at the seedling stage is not only a cost-
effective and time-saving approach (Badr et al., 2020) but 
has also shown a positive relationship with the stem-related 
traits and grain yield in wheat and maize (Abdel-Ghani et al., 
2013; Dodig et al., 2015). On the basis of these studies, we 
have carried out morpho-physiological screening of pearl 
millet parental lines for seedling drought tolerance, followed 
by gene expression studies.

Genotypic Variation for Morpho-physiological traits
Physiological traits such as RL, SL, R/S, RWC, WRC and CSI 
were investigated in 41 genotypes after subjecting to early 
seedling stage drought stress. The effect of drought stress 
on treatments, genotypes, and their interactions was highly 
significant for SL, R/S ratio and RWC (p < 0.001) (Table 2). Our 
results are in accordance with the reports in wheat wherein 
PEG-induced drought showed significant differences 
with respect to genotypes, treatments, and genotype 
× treatment interaction (Belay et al., 2021). Significant 
differences were not observed for RL with treatments and 
genotype × treatment interactions for WRC.

Effect of Drought Stress on Morpho-physiological 
Traits
Under water-deficient conditions, roots are the first to 
respond by increasing their length (Kano-Nataka et al., 2011). 
In normal conditions, root length (RL) varied from 17.22 
to 6.41 cm, whereas under drought conditions, it ranged 
from 16.35 to 6.91 cm. Notably, the pearl millet B line ICMX 
1410698-SB-11-1-1-2 exhibited the highest increase in root 
length (83.7%) under seedling drought conditions. Seedlings 

or adult plants with longer roots are better at sensing and 
responding to water stress compared to those with shallower 
root systems, thus indicating greater tolerance (Asch et al., 
2005; Khodarahmpour, 2011). Root length increases have 
been utilized to screen drought-tolerant lines in crops 
like chickpeas (Serraj et al., 2004) and rice (Madabula et al., 
2016). However, while many genotypes showed increased 
root length in response to drought, some also experienced 
a reduction compared to control conditions. For instance, 
a 39.8% decrease in root length was observed in the TT-1 
pearl millet genotype under PEG-induced drought stress 
(Shivhare and Lata, 2019), and similar reductions have 
been reported in maize (Avramova et al., 2016) and citrus 
(Zaher-Ara et al., 2016). Increased root growth often reflects 
a genotype’s ability to withstand water stress. Under stress, 
plants activate various metabolic pathways to survive, with 
rapid root growth being a key adaptive response in more 
tolerant genotypes, while sensitive ones may not exhibit 
this trait.

Shoot length is a crucial trait affected by water-deficient 
conditions and is an important criterion for selecting 
drought-tolerant genotypes (Schubert et al., 1995; Ahmed et 
al., 2019). In our study, shoot length (SL) ranged from 19.35 to 
5.91 cm under control conditions and from 17.35 to 6.96 cm 
under drought stress. While some genotypes, such as ICMB 
100173 and ICMX 1410509-SB-7-1-1-1, exhibited a decrease in 
SL, others, like ICMX 1410506-SB-1-4-1-B and ICMX 1410698-
SB-11-1-1-2, showed an increase. Notably, the genotype ICMP 
100230 displayed the most significant relative decrease in 
SL, indicating potential drought tolerance. Previous research 
has also observed reduced shoot length under drought 
stress in crops such as rice, pea, and wheat (Junfeng et al., 
2004; Asch et al., 2005; Okçu et al., 2005; Almaghrabi, 2012). 
This reduction in shoot length is often due to decreased cell 

Table 1: Details of genes and primers analyzed by semi-quantitative RT-PCR

Gene Primer (5’-3’) Annealing temperature (°C)

Serine-threonine kinase receptor-associated protein (ST) FP: GGATGTGAGAACTGGAAAAA
RP: ACCGTGATGTCCTTTGTTAC

52

Stress-induced transcription factor nac1 (NAC) FP: AAGAAAAGGGAAGGAGAGG
RP: AGGGGTCGAACTTGTAGAG

53

26s proteasome regulatory particle triple-a atpase subunit4 (26S) FP: AGATTGAGATTCCACTACCC
RP: AGCTCCCTGACGATACAC

54

Tonoplastdicarboxylate transporter-like (TD) FP: GGGAGTCTAATTGTGCTATG
RP: GGATAGGATGTCAGTCAGG

53

Wd-40 repeat family expressed (WD-40) FP: GTTCCAGAGAGCAAGAGA
RP: GTTGGTGATGGAGTAGTTG

50

Galacturonosyltransferase (GAUT) FP: GCCTGTAGAGAAGAGATGGA
RP: ATGAGAAGGCGGAATGTAG

52

Abscisic Stress-Ripening Protein 2-like (ASR) FP: AGAAGAAGCAGGACCACAA
RP: AAACACACACATGACACACC

50

β-actin FP: GTTCGTGACATCAAGGAGAA
RP: ACCATCAGGCAATTCGTAG

51
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division and cell enlargement, as drought stress negatively 
impacts growth by limiting cell division and elongation 
(Kramer, 1983; Shao et al., 2008; Ahmed et al., 2019).

In response to drought, an increase in the root-to-shoot 
(R/S) ratio has been observed in crops such as mungbean 
and rice, and this ratio is used as a criterion for drought 
screening (Wade et al., 2000; Haider et al., 2012; Aslam et 
al., 2013). Under control conditions, the R/S values ranged 
from 1.55 to 0.51. When exposed to drought, these values 
shifted to a range of 1.69 to 0.50. Genotypes exhibited 
varied responses regarding the R/S ratio; some showed no 
significant change, while others experienced a decrease 
(e.g., ICMX 1410506-SB-1-4-1-B, ICMR 100221). Conversely, 
genotypes such as ICMB 1502 and ICMB 100173, which had 
higher R/S ratios, indicated better drought tolerance. An 
increase in the R/S ratio under drought conditions has also 
been reported in other crops like wheat (Liu et al., 2004) 
and rice (Cui et al., 2008). This increase is attributed to the 
translocation of carbohydrates from shoot tissues to the 
roots, promoting root growth and enhancing drought 
resilience.

Water retention capacity (WRC) has been a key 
parameter for assessing drought-tolerant genotypes in 
wheat (Sandhu and Laude, 1958; Salim et al., 1969; Kirkham 
et al., 1980) and is thus used in this study to identify drought-
tolerant genotypes in pearl millet. Under control conditions, 
WRC ranged from 22.38 to 10.59, whereas under drought 
conditions, it ranged from 16.16 to 7.55. The decrease in 
water retention capacity compared to control conditions 
indicates damage to the cell structure. The genotype ICMX 
1410848-B-9-2-2 exhibited the greatest relative decrease in 
WRC (41.4%), suggesting substantial cell damage and greater 
drought susceptibility. These findings align with previous 
reports in soybeans, where cultivars showed significant 
reductions in relative water content (RWC), exudation rate, 
and WRC during drought (Chowdhury et al., 2017).

The ability of plants to endure drought also depends 
on chlorophyll availability, which is crucial for dry matter 
production and increasing photosynthetic rates. The 
chlorophyll content is described by the chlorophyll stress 
index (CSI), which is a screening method used to identify 
tolerant genotypes (Aparna et al., 2017). Previous studies 

have utilized CSI for drought screening in chickpeas and 
wheat (Gupta et al., 2000; Ulemale et al., 2013). In this 
investigation, no significant differences were observed 
among genotypes, treatments, or genotype × treatment 
interactions.

RWC is widely recognized as one of the most 
straightforward and crucial parameters for screening 
drought tolerance in agriculture. It assesses tissue sensitivity 
and dehydration tolerance of cells. Research has shown 
that drought-resistant genotypes retain more water in their 
leaves compared to sensitive ones, as observed in wheat 
(Rampino et al., 2006; Ahmed et al., 2019) and sugarcane 
(Silva et al., 2007). Our study found that drought stress 
significantly reduced RWC; in control samples, RWC ranged 
from 88.3 to 49.1%, while in drought conditions, it ranged 
from 82.0 to 47.5%. RWC is a critical criterion for selecting 
genotypes for gene expression studies. Previous research 
has also highlighted RWC as a key selection criterion for 
drought-tolerant genotypes in wheat (Schonfeld et al., 1988), 
snap bean (Omae et al., 2005), and soybean (Chowdhury et 
al., 2017). Among the various parameters studied, RWC is 
considered one of the best criteria for selecting drought-
tolerant genotypes in crop plants (Rad et al., 2013; Maheswari 
et al., 2016).

For gene expression studies, we selected two of the 
best-performing genotypes (ICMX 1410852-B-23-2-2 
and ICMP 100230) and two poor-performing genotypes 
(ICMX 1410848-B-9-2-2 and ICMX 1410506-SB-1-4-1-B) 
based on their RWC. Gene expression was analyzed using 
semi-quantitative RT-PCR with the following markers: 
ST (Hu et al., 2011), NAC (McGrann, 2015), 26S (Kurepa et 
al., 2009), TD (Yildırım et al., 2018), WD-40 (Maksup et al., 
2014), GULT (Cheng et al., 2018), and ASR (Feng et al., 2016). 
The physiological response of genotypes (B and R lines) 
to control and drought stress is presented in Table 3 and 
Figure 1. 

Correlation Among Different Physiological Traits
To identify best performing genotypes under drought stress 
correlation studies have been carried out. In the present 
investigation, RL exhibited a significant positive correlation 
with R/S ratio (control [0.40**] & drought [0.47**]) and 

Table 2: Analysis of variance of morpho-physiological traits

Source of variation Df
Mean sum of square

RL SL R/S RWC WRC

Genotypes 40 27.61** 22.65** 0.30** 418.12** 20.58**

Treatments 1 6.60 35.90** 0.05** 3957.63** 319.77**

Genotypes x Treatments 40 7.31** 7.24** 0.06** 78.11** 3.68

CD 1.07 1.05 0.05 4.48 1.85

CV (%) 7.89 7.57 4.78 5.54 12.52

Note: * significant at 5% ** significant at 1%
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Table 3: Morpho-physiological changes of pearl millet genotypes during seedling drought stress

RL (cm) SL (cm) R/S RWC (%) WRC CSI 

Genotypes C D C D C D C D C D 1st day 2nd day 3rd Day 

ICMB 100173 (B) 9.62 10.91 14.72 12.78 0.82 0.92 69.7 64.95 15.85 15.42 94.78 96.87 128.56

ICMX 
1410719-SB-1-
2-1-2(B)

8.12 8.75 12.82 12.12 0.65 0.66 65.48 60.65 22.38 14.22 99.80 106.85 96.08

ICMX 
1410509-SB-7-
1-1-1(B)

9.64 10.82 19.35 14.64 0.79 0.79 71.29 68.36 14.86 12.25 76.44 83.13 116.62

ICMX 
1410722-SB-5-
7-2-3(B)

10.14 8.24 10.76 12.13 0.74 0.95 70.86 68.29 18.14 16.16 124.64 168.41 148.23

ICMX 
1410506-SB-1-
4-1-B(B)

6.41 6.91 11.83 13.71 0.55 0.50 49.07 47.45 15.48 12.24 45.73 108.71 99.59

ICMX 1410488-
SB-2-1-5-1 (B) 14.33 13.61 11.34 12.39 1.15 1.12 69.60 57.87 12.36 10.79 100.59 97.94 98.48

ICMX 
1410495-SB-8-
2-1-B(B)

9.44 8.22 16.54 15.06 0.54 0.56 66.08 65.00 14.31 13.57 101.63 109.94 125.25

ICMX 1410843-
B-8-1-2 (B) 8.70 9.28 15.23 13.41 0.51 0.71 78.64 76.13 15.67 13.21 64.05 86.17 130.61

843B(B) 9.92 11.74 10.95 12.26 1.09 0.99 84.03 74.53 13.42 11.5 104.88 109.74 100.56

ICMX 
1410723-SB-3-
3-1-B(B)

10.41 12.50 11.26 11.92 0.99 1.18 71.99 57.03 12.50 10.01 85.67 107.35 114.02

ICMX 
1410698-SB-11-
1-1-2(B)

7.35 13.50 10.12 12.00 0.65 1.09 69.63 54.61 14.85 14.11 104.58 97.09 92.60

ICMB 101724(B) 10.32 13.11 14.12 12.41 1.17 1.17 66.48 56.48 11.29 10.85 104.60 84.99 102.71

ICMX 
1410852-B-1-
5-3(B)

13.31 13.76 14.35 10.33 1.01 1.29 80.19 78.71 14.12 13.06 85.31 82.81 95.81

ICMX 
1410848-B-9-
2-2(B)

15.83 14.08 13.20 11.05 1.25 1.35 59.72 49.41 12.85 7.55 94.10 97.44 105.21

ICMX 
1410849-B-11-
1-1(B)

12.24 11.91 13.16 11.33 1.12 0.99 66.28 53.02 14.69 11.11 96.72 90.67 100.97

ICMB 02333(B) 9.46 12.60 13.13 11.82 1.25 1.22 73.37 60.62 15.98 12.61 92.79 97.11 100.13

ICMB 04222(B) 15.61 16.35 18.42 17.35 1.00 0.94 73.61 52.25 12.83 10.33 90.41 88.18 93.10

ICMB 1502(B) 7.03 10.93 12.45 10.60 0.91 1.22 73.64 66.23 11.68 9.00 103.13 82.60 93.59

ICMB 101572(B) 11.93 9.32 11.12 12.50 1.16 1.08 61.83 61.10 13.56 12.98 109.90 104.41 99.13

ICMX 
1410852-B-23-
1-1(B)

11.2 12.28 14.20 12.31 0.76 0.89 82.96 67.06 13.83 11.56 99.67 97.53 97.75

ICMX 
1410852-B-23-
2-2(B)

15.73 15.06 14.14 13.09 1.11 1.07 85.47 81.95 11.50 9.25 93.31 85.05 81.74

ICMB 04999 (R) 12.60 11.40 10.02 11.04 1.39 1.21 79.63 61.67 15.93 12.88 81.69 84.83 89.08

ICMR 100221(R) 15.76 12.00 13.52 14.50 1.05 0.67 61.47 60.59 13.76 11.75 106.86 97.57 97.09

ICMR 100218(R) 13.63 11.85 11.85 12.73 1.14 0.83 72.93 65.97 15.29 13.31 113.71 116.07 104.62

ICMX 
1510531-SB-7-
1-4(R)

10.75 13.85 14.64 12.23 1.07 1.13 85.29 63.21 13.50 10.03 97.46 90.87 93.43
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ICMX 
1411014-B-7-
3-1(R)

13.10 12.89 10.25 8.98 1.33 1.57 70.44 66.8 11.53 8.01 102.60 123.30 108.38

ICMX 
1510541-SB-3-
4-2(R)

11.43 13.62 10.80 12.20 1.13 1.17 84.58 76.83 12.75 12.49 99.55 117.35 104.64

ICMX 
1510531-SB-7-
1-2(R)

13.82 11.52 12.72 6.96 0.92 0.83 77.07 73.03 13.42 12.61 104.55 107.96 91.13

ICMX 
1510541-SB-3-
4-5(R)

14.05 14.93 13.7 13.49 1.04 1.06 85.34 80.73 17.59 11.83 90.88 91.20 91.67

ICMR 100029(R) 13.60 13.73 12.55 9.74 1.08 1.27 76.90 74.13 15.20 11.16 115.91 98.64 91.91

ICMR 100591(R) 11.30 12.99 9.40 11.65 1.14 1.25 88.30 79.32 13.32 10.97 108.33 122.03 112.75

ICMP 100230(R) 8.73 9.11 5.91 9.84 1.01 1.39 81.34 80.84 12.57 11.54 102.46 111.07 98.45

ICMX 
1410857-B-17-
3-1-2(R)

11.75 10.76 15.51 9.90 0.96 1.06 81.56 78.25 11.15 10.91 133.85 102.15 101.48

ICMX 
1411007-B-16-
2-3(R)

13.66 15.52 13.76 12.62 1.31 1.15 86.85 63.97 13.46 11.76 109.26 102.05 91.45

ICMX 
1411016-B-1-
2-2(R)

9.82 14.07 9.95 12.13 1.03 1.00 69.55 68.3 14.46 11.33 83.68 107.81 118.39

ICMX 
1411004-B-37-
2-1(R)

12.51 14.10 10.45 8.16 1.29 1.69 77.20 75.63 13.05 9.12 98.47 91.26 100.53

ICMX 
1510532-SB-2-
7-7(R)

15.72 12.62 11.92 14.1 1.55 1.08 84.43 67.29 10.59 9.93 100.92 94.88 89.16

ICMX 
1510552-SB-9-
6-2(R)

14.10 11.73 12.82 10.64 1.13 1.16 75.38 74.58 11.16 8.81 81.99 101.86 96.12

ICMX 
1410826-B-1-
3-2(R)

17.22 13.73 12.84 11.45 1.33 0.98 83.72 80.65 14.00 12.59 98.08 104.32 95.44

ICMR 100068(R) 13.06 11.32 9.94 8.63 1.32 1.22 75.73 72.36 11.74 10.98 105.10 108.64 109.25

ICMX 
1410827-B-1-
3-3(R)

10.95 12.12 11.48 9.73 0.97 1.24 84.57 57.43 14.64 12.30 159.75 123.59 118.76

MEAN 11.81 12.14 12.62 11.85 1.03 1.06 74.93 66.91 13.93 11.61 99.22 101.96 103.04

RANGE 10.81 9.44 13.44 10.39 1.04 1.19 39.23 34.5 11.79 8.61 114.02 85.81 66.49

Note: (B) – B line, (R)- R line, C-Control, D-Drought, RL- Root length, SL- Shoot length, R/S- Root/Shoot ratio, RWC- Relative water content, WRC- 
Water retention capacity, CSI-Chlorophyll stability index

RWC (0.29** control conditions) but a significant negative 
correlation with WRC (control [-0.29**] & drought [-0.33**]). 
No significant association was observed between root 
length (RL) and shoot length (SL). A similar lack of association 
was reported in wheat (Ahmed et al., 2019). SL was negatively 
correlated with R/S ratio and RWC under both control and 
drought stress. A similar result of a negative correlation 
between the RL and R/S was observed in rice (Haider et 
al., 2012). A significant positive correlation was observed 
between the R/S ratio and RWC but a negative correlation 
with WRC under both control and drought stress. There was 

no significant association between the RL and SL in both 
control and drought stress (Table 4).

Expression of Drought Responsive Genes
To elucidate molecular changes in response to drought 
stress, gene expression studies were carried out in selected 
(two susceptible and two tolerant) pearl millet parental lines 
at the early seedling stage by semi-quantitative PCR analysis. 
Seven drought-responsive genes were shortlisted for the 
expression studies such that they include MAPK pathway, 
ABA-dependent, and independent pathways, and also 
those involved in secondary metabolism, programmed cell 
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Figure 1: Box and whisker charts showing mean values of RL, SL, R/S, RWC, CSI and WRC of pearl millet genotypes under drought stress

Table 4: Pearson’s correlation coefficients matrix of pearl millet 
genotypes under drought stress

Root 
length

Shoot 
length R/S RWC WRC

Shoot 
length C 0.134

D 0.037   

R/S C 0.40** -0.414**

D 0.479** -0.581**

RWC C 0.299** -0.164 0.401**

D 0.103 -0.254** 0.303**

WRC C -0.293** 0.075 -0.295** -0.186*

D -0.33** 0.16 -0.408** -0.017

Note: * significant at 5% ** significant at 1%

death, ion transport and cell growth. ST showed increased 
expression in all genotypes under drought stress. ST and 
NAC genes displayed 3.5 and 5.9 fold increases under 
drought stress in tolerant genotype ICMP 100230, while it 
was only 2.03 and 3.62 fold in ICMX 1410852-B-23-2-2. The 
physiologically susceptible genotypes, ICMX 1410848-B-9-
2-2 ICMX 1410506-SB-1-4-B have shown expression levels 
of 1.41-fold for ST, 2.28-fold for NAC and 1.04-fold for ST, 
1.02 fold for NAC gene. ST is a positive regulator of plant 
response to drought and is involved in abiotic stress signal 
transduction in plants (Hrabak et al., 2003). The expression 

of ST was higher in the tolerant genotypes ICMP 100230 
attributing to a low relative decrease in RWC and higher RL. 
Tolerant genotypes showed higher expression compared to 
the susceptible ones, representing activation of SNF1-related 
protein kinase 2 pathways (ABA-dependent pathway) in 
response to drought. Our observations were in accordance 
with previous reports on maize and soybean (Hu et al., 
2011; Sun et al., 2013). NAC transcriptional factors, which are 
involved in the ABA-independent pathway, are involved in 
the regulation of many developmental processes, including 
secondary cell wall biosynthesis, senescence, and biotic and 
abiotic stress tolerance (Puranik et al., 2012). NAC expression 
ranged from 3.6 to 5.9 folds in the tolerant genotypes, 
representing activation of ABA independent pathway 
and drought stress-responsive genes. Earlier studies also 
indicated similar results in rice and wheat (Hu et al., 2006; 
Saad et al., 2013).

Galacturonosyltransferase is a component of the 
cell wall and is involved in pectin synthesis, flower and 
fruit pigmentation, hormone homeostasis, and defense 
responses (Atmodjo et al., 2011; Fangel et al., 2011). Genotype 
ICMX 1410852-B-23-2-2 expressed a higher fold change of 
2.68, followed by ICMP 100230, expressing fold changes 
of 2.32. Higher expression in tolerant genotypes may be 
attributed to negligible changes in structure and cell wall 
composition. This is supported by Crombie et al. (2003), 
and Parre and Geitmann (2005) and our observations are 
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consistence with those reported in rice, eucalyptus, and tea 
(Liu et al., 2016; Zheng et al., 2016; Cheng et al., 2018). 

ASR is crucial for regulating plant responses to ABA and 
various stresses, including osmotic, salinity, and drought 
(Çakir et al., 2003; Hu et al., 2013). Genotype ICMX 1410852-
B-23-2-2 exhibited a fold change of 2.93 for ASR, which was 
higher than ICMP 100230, which showed a fold change of 
2.04 for ASR. More than 2 fold increase was noted in the 
tolerant genotypes, attributing to higher RWC and increased 
expression of antioxidants and enzymes such as superoxide 
dismutase, catalase, and peroxidize. The reports in rice 
further supported this (Philippe et al., 2010) and tomato 
(Maskin et al., 2001).

The expression of 26S proteasome was higher in 
susceptible ones ICMX 1410848-B-9-2-2 (2.46), ICMX 
1410506-SB-1-4-1-B (2.75) compared to the tolerant 
genotypes ICMP 100230 (1.64), ICMX 1410852-B-23-2-2 
(1.80). Lower expression of 26S indicates a relative increase 
of 20S proteasome, which imparts oxidative stress tolerance 
under drought conditions and plays an important role in 
ubiquitin-dependent proteolysis as in the case of upland 
and lowland rice cultivars subjected to water stress (Wang et 

al., 2007). The TD gene expression was comparatively higher 
in tolerant genotypes ICMP 100230 and ICMX 1410852-B-
23-2-2 with a fold change of 6.06 and 5.84, respectively. In 
response to drought, several signal transduction pathways 
operate, including vacuolar transport proteins such as 
tonoplast dicarboxylate transporter (TD), leading to the 
effective accumulation of solutes in vacuoles, resulting in the 
maintenance of cell turgor. Higher expression of TD in the 
tolerance genotype, ICMP 100230 ICMX 1410852-B-23-2-2 
can be attributed to a minimum relative decrease in the 
RWC values.

Cell death is one of the commonly adapted defensive 
mechanisms by plants under abiotic stress. WD-40 repeat 
proteins are usually related to E3 ubiquitin ligase enzymes, 
which are involved in cell cycle control and apoptosis 
(Yee and Goring, 2009). The sensitive genotype ICMX 
1410506-SB-1-4-1-B, ICMX 1410848-B-9-2-2 expressed a 
higher fold change of 5.29 and 3.79, representing high-level 
oxidative damage of cells, leading to necrosis compared to 
tolerant genotypes ICMP 100230 (1.69), ICMX 1410852-B-
23-2-2 (1.49). Drought-sensitive rice variety IR20 expressed 
increased WD-40 repeat protein by 2.5 times under drought 

Figure 2: Relative expression (Fold change) of selected genes (ST, NAC, 26S, TD, WD-40, GAUT, ASR) in four pearl millet [tolerant (T) and 
susceptible (S)] genotypes under control and drought stress conditions
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stress (Maksup et al., 2014) and in maize (Zheng et al., 2004). 
The bar diagrams depicting the relative expressions in four 
pearl millet genotypes are presented in Figure 2.

Conclusion
Considering our results, we concluded that pearl millet 
genotypes (B and R lines) respond differentially in response to 
drought by bringing changes in their morpho-physiological 
traits and operating different stress-responsive pathways. 
There exists a correlation between the morphological 
and molecular behavior of plants in response to seedling 
drought stress. Physiological traits like RL, SL, R/S and RWC 
can be considered for the screening of drought-tolerant 
lines. Based on these traits, five drought-tolerant genotypes 
were identified (ICMX 1510541-SB-3-4-5, ICMX 1410852-B-1-
5-3, ICMX 1410843-B-8-1-2, ICMX 1411004-B-37-2-1 and ICMR 
100029). The information generated is useful for breeders 
in the development and improvement of parental lines and 
hybrids.
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