
Abstract
Crop species modeling is limited to prime crops like wheat, rice, maize, soyabean, etc., and few attempts have been made for spies’ 
crops grown in arid and semi-arid regions. This study examines the habitat suitability of Cuminum cyminum (cumin), a crop grown in 
Rajasthan and Gujarat, India. The widely used WorldClim dataset and CMCC-BioClimInd bioclimatic dataset were tested for predictive 
and elucidative power. This evaluation calculated AUC and omission rate using the MaxEnt entropy method. The WorldClim dataset 
includes three-time frames and four greenhouse gas scenarios. The CMCC-BioClimInd dataset included five Earth System Models (ESMs): 
GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M, which included two emission scenarios (4.5 and 8.5). 
The results indicate that both data sets have similar predictive accuracy. However, the optimal predictive areas for this crop differed 
significantly between the two model types. Annual precipitation, precipitation seasonality, precipitation during the coldest quarter, and 
potential evapotranspiration Hargreaves are the main factors affecting this crop’s growth and expansion into new regions. Our research 
offers a novel standpoint for the implementation of this crop in potential new areas within Rajasthan and Gujarat.
Keywords Agricultural Production and Innovation, Cuminum cyminum, Climate Action, CMCC-BioClimInd, Maxent, Precipitation, Species 
Distribution Modelling.
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Introduction
India is the world’s largest producer, exporter, and consumer of 
spices, leveraging its rich spice cultivation history. India has about 
63 spices, 20 of which are seed spices. Cumin, fenugreek, coriander, 
and fennel are grown in India. A popular spice is cumin, scientifically 
known as Cuminum cyminum L. and it contributes Rs 2884.80 crore 
to the annual export value of seed spice crops, which total Rs 
19505.81 crore. India satisfactorily meets 50% of global demand, 
demonstrating its importance in the global market (Sharma et 
al., 2018; Kumar et al., 2023). Rajasthan and Gujarat produce over 
80% of India’s cumin. Despite a smaller scale, Uttar Pradesh, Delhi, 
Uttarakhand, Madhya Pradesh, Chhattisgarh, and West Bengal 
have also grown this aromatic spice. Over a decade (2011–2020), 
this crop production in Gujarat and Rajasthan showed significant 
spatial differences. Cumin cultivation, production, and productivity 
are highest in Surendranagar, Gujarat. Banaskantha, Patan, Kutch, 
Rajkot, Junagadh, Porbandar, and Ahmedabad follow. Barmer had 
the most cumin land in Rajasthan, followed by Jodhpur, Jalore, 
Nagaur, Jaisalmer, and Ajmer (Kumar et al., 2023).

Cumin, a small annual herbaceous plant in the Apiaceae 
(Umbelliferae) family (Fig. 1A and B), is susceptible to frost damage, 
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especially during flowering and seed formation. Aroma 
and pharmaceutical uses are valued in its seeds (Fig. 1C). 
The cumin plant, known for its resilience in arid climates, 
thrives in tropical or subtropical climates. The growth phase 
lasts 100–120 days. This species grows best at 20–30°C 
and 30–270 cm of annual precipitation. Sowing is best 
between mid-November and the first week of December. 
These climatic influences on cumin crops require scientific 
inventories to determine the reactions of various climatic 
models that predict the spatial and temporal fluctuations 
in the suitability of habitats for this crop, which is mostly 
found in Rajasthan and Gujarat.

Species Distribution Modelling (SDM) predicts and 
explains the geographical parameters that help species 
survive in the face of climate change (Mathur and Mathur, 
2023). Scholars are using many global bioclimatic index 
datasets due to climate data accessibility (Morales-Barbero 
and Vega-Alvarez, 2019). The WorldClim dataset (Fick and 
Hijmans et al., 2017; Poggio et al., 2017) is a leading global 
climate dataset used in many fields. It is useful in ecological 
hydrology, climatology comparisons, carbon stock and 
temporal variation evaluation, and niche modelling of 
endangered plant species. 

The dataset contains 19 bioclimatic variables related 
to temperature and precipitation, along with historical, 
current, 2050, and 2070 temporal frames. Additionally, the 
dataset includes Representative Concentration Pathways 
(RCPs) for Green House Gas Scenarios. The WorldClim 
dataset offers four spatial resolutions from 30 seconds (~1 
km2) to 10 minutes (~340 km2), making it valuable. However, 
the limited scope of the 19 bioclimate variables makes it 
difficult to simulate plant and organism distribution because 
flora growth and proliferation require considerations 
beyond precipitation and temperature. As shown, some 

regions have high evaporation despite high precipitation. 
Thus, plants transfer water through various mechanisms. 
Climate change is increasingly projected using Earth system 
models (ESMs) that combine atmospheric and oceanic 
dynamics with cryosphere and biosphere models (Asch 
et al., 2021). Future climate data depend on CO2 emission 
scenarios, which are usually represented by representative 
concentration pathways (RCPs) or shared socioeconomic 
pathways (SSPs) that represent optimistic and pessimistic 
global technological, economic, and social development 
(Mathur and Mathur, 2023). 

Noce et al. (2020) introduced the CMC-BioClimInd, a 
35-variable bio-climatic indicator with a 0.5° grid resolution, 
for five Earth System Models (ESMs) in CMIP5: GFDL-
ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, 
NorESM1-M. This new data set covered 1960–1999 and 2040–
2079 and 2060–2099. The inclusion of spatial information 
that is missing from the WorldClim dataset allows for the 
precise assessment of climate change’s impact on the 
protection and management of fauna, flora, and ecological 
assets across various spatial scales and domains of study. 
The CMCC-BioClimInd can quickly and easily determine 
the correlation between the species under investigation 
and the climatic variables, mitigating fluctuations from 
the future trajectory and the physical attributes of various 
indicators. Noce et al. (2020) examined the interrelationships 
between climate variables in two models, CMCC-BioClimInd 
and WorldClim, and the causes of their differences. CMCC-
BioClimInd predicts species distribution and simulates 
climate change with high accuracy, comprehensiveness, 
and efficacy.

In SDM analysis, bioclimatic model types like GCMs and 
ESMs, as well as RCPs and SSPs, cause predictive variabilities 
in area and production. These factors, alone or together, 

Fig. 1: Crops of Cuminum cyminum at vegetative stage (a), C. cyminum at fruiting stage (b), C. cyminum seeds (c), and spatially thinned sampling 
locations at Rajasthan and Gujarat states of India (D)
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shape SDM analysis results through complex interactions.
According to our knowledge, CMCC-BioClimInd and 
WorldClim data have not been used to predict spice crop 
spatial extents. The current study compares WorldClim 
and CMCC-BioClimInd’s RCPs and time frames on Cuminum 
cyminum crops habitat suitability in India’s arid and semi-
arid regions. Five ESMs, two time periods (2050 and 2070), 
and four Green House Gas Scenarios (GHS)—RCP 2.6, 4.5, 
6.0, and 8.5 of WorldClim dataset were associated with two 
horizons. Both models were compared to WorldClim version 
2 bio-climatic predictors. 

Materials and Methods
Distribution data-set
Distributional records for this species were obtained from 
data repositories such as GBIF (https://www.gbif.org), 
published literature like Chandawat et al. (2008); Meena et al.   
(2012); Verma and Kumar (2015); Kant et al. (2017); Mehriya 
and Ramesh (2018); Pagaria and Sharma (2019) as well as 
information collected from Thasildar (revenue) office of 
Jodhpur (20221) and Jalor (2023), outreach activities carried 
out by different Kissan Vigyan Kendras (KVKs) like Amereli 
http://www.jau.in/attachments/SeedVillage/KVK-Amreli.
pdf; Khaat http://www.jau.in/attachments/SeedVillage/
KVK-Khapat.pdf;

Targhadia http://www.jau.in/attachments/SeedVillage/
KVK-Targhadia.pdf and  Jamnagar http://www.jau.in/
attachments/SeedVillage/KVK-Jamnagar.pdf) of Junagarh 
Agricultural University worked under Gujarat seed village 
programe (http://www.jau.in/index.php/extension-40/

seed-village-programme) and KVKs of Barmer (https://
www.aujodhpur.ac.in/kvk-ma.php?office=9) operated 
under Agriculture University, Jodhpur. The coordinates 
of sites/village mentioned in published literature as well 
as government sources were identified through google 
earth and projected them with GIS ArcMAP on a WGS84 
coordinate system (Coban et al., 2020). In order to lessen the 
effects of spatial autocorrelation and eliminate redundant 
entries, we employed the spatial thin window of the 
“Wallace Software”, a Graphical User Interface based on the 
R programming language (Kass et al., 2018), with a thinning 
distance of 10 kilometres.

Bio-Climatic Variables
CMCC-BioClimInd is available in full from PANGAEA.1 
(https://doi.pangaea.de/10.1594/PANGAEA.904278?format 
=html#download). There are 805 NetCDF4 files with a 
0.5 × 0.5° grid resolution and global coverage (excluding 
Antarctica) (Noce et al., 2020). As mentioned, we used five 
ESMs: CMIP5: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, 
MIROC-ESM-CHEM, NorESM1-M, and two RCPs: 4.5 and 
8.5 for 2040-79 (60) and 2060-99 (80). We used ArcGIS 10.2 
spatial analysis function to extract the simulated values 
of 35 bioclimatic indicators for India and clipped the data 
set using geoprocessing (Wang et al., 2023). Observational 
data from WorldClim version 2.0 (Fick and Hijmans, 2017) 
predicted species distributions. 19 bioclimatic variables 
(Hijmans et al., 2005) were downloaded at 30 seconds (~1 
km2) and converted to ASCII (or ESRI ASCII) in DIVA-GIS 
version 7.5 (Coban et al., 2020) for current and two future 
climatic scenarios (2050- and 2070-time frames, respectively; 

Table 1: Variables Importance Values of different bio-climatic variables studied with specific models using Maxent tool

Bioclimatic Models
Bio-Climatic Variables (BC)

1 2 3 4 6 7 11 12 15 19 27 29 34

Current 8.9 2.5 0.7 5.1 0.2 0.9 3.9 21 40.2 16.2 - - -

2050 RCPs

2.6 9.4 7.4 1.3 1.6 4.5 0 6.8 23 27.7 18.9 - - -

4.5 10 7.5 1.1 1.3 6.9 0.7 1.3 19 41.9 10.8 - - -

6 10.9 7.1 3.7 0.1 6.6 0.8 6.5 16 27.5 20.9 - - -

8.5 8.6 6.3 1.5 2.2 5.7 0.6 4.9 18 36.3 16.4 - - -

2070 RCPs

2.6 1.9 5.5 0.1 2.5 3.5 0.4 0.8 9.9 64.2 11.2 - - -

4.5 4.9 6.7 1.3 1.7 8.7 1 3.2 14 38.7 20.1 - - -

6 15 7.9 1.9 1.5 0.9 0 6.2 17 27.3 22.7 - - -

8.5 3.1 8.7 0.1 1.8 9.3 0.6 1.2 14 43.4 17.4 - - -

GFDL

45 (60) 8.3 0 0.2 5.5 0.8 0.2 1.1 10 7 41.4 2.1 7 16.3

45 (80) 4.2 0 0.2 5.7 4.5 0.1 0.5 13 6.6 35.3 2.3 1.1 26.6

85 (60) 10 0.6 0.4 2.4 0.3 0.9 7.6 20 13.2 21 1.4 1.9 20.4

85 (80) 12.3 0.3 0.4 5.8 0.1 0.6 4.3 16 1.9 34 0.2 3.4 20.4
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Zhang et al., 2022). RCPs 2.6, 4.5, 6.0, and 8.5 are represented 
by these datasets. The four RCPs range from high (RCP 8.5) to 
low (RCP 2.6) planned concentrations. In RCP 2.6, aggressive 
mitigation and low emissions reduce greenhouse gas (GHG) 
concentrations. The maximum emission scenario is RCP 8.5, 
while intermediate scenarios are RCP 4.5 and 6.0. In GHG 
concentration pathways, radioactive forcing (global energy 
imbalance) stabilizes 2.6, 4.5, 6.0, and 8.5 W/m2 (Chaturvedi 
et al.,2012). The units and mathematical expressions for each 
bio-climatic parameter are in supplementary Table 1.
The climate during this crop’s cultivation greatly affects 
its distribution and production. Instead of using a multi-
collinearity test, we only consider bio-climatic variables 
that occur during cultivation, have an annual influence, 
and follow this rationale. So, 13 variables were chosen. 
annual mean temperature (BC-1), mean diurnal range 
(BC-2), isothermality (BC-3), temperature seasonality 
(BC-4), minimum temperature of coldest month (BC-6), 
temperature annual range (BC-7), mean temperature 
of coldest quarter (BC-11), annual precipitation (BC-12), 
precipitation seasonality (BC-15), precipitation of coldest 
quarter (BC-19), simplified continentality index (BC-27), 
mean temperature of coldest month (BC-29), and potential 
evapotranspiration Hargreaves

Projection transformation
It is critical to standardize the projections of the Bio-
Climatic variables obtained from disparate sources and at 
varying resolutions prior to extracting data and generating 

forecasts using the MaxEnt model. Our analytical approach 
included ArcMap and ArcToolbox to follow a predefined 
methodology. The projection delineation was originally 
explained in the “projection and transformation” section 
of the Data Management Tools interface (Jijon et al., 2021). 
We used the World Geodetic System 1984 EASE Geographic 
Coordinate System (GCS) for this. We converted the habitat 
class raster file projections to WGS 1984 web Mercator 
(auxiliary sphere-3857) in order to use Arc Map’s “calculate 
geometry” window to quantify area under each habitat 
suitability class (see below).

Species Distribution Modelling
The present study used Maxent 3.4.1 (http://www.cs. 
princeton.edu/schapire/Maxent/) to simulate and predict 
C. cyminum plausible geographic distribution likelihood 
using bio-climatic models of different timeframes and 
RCPs. This tool’s discrete execution with each predictor in 
isolation allows us to accurately measure their impact on 
the species’ distributional pattern. During modeling, 70% of 
this crop’s spatially thinned distribution data were randomly 
selected as training data and 30% as testing data. The 
random background point count was 10,000 (Zhang et al., 
2021). We set the regularization multiplier to 0.1 to avoid test 
data overfitting. (Phillips et al., 2006). Linear, quadratic, and 
hinge properties were used. The environment parameters 
were configured using the Jackknife method, while the rest 
were left at their software defaults. threshold-independent 
receiver-operating characteristic (ROC) analyses and an 

HADGAM

45 (60) 1.6 0.4 0 1 0.8 0.9 1 13 58.5 13.2 0.4 1.9 7.6

45 (80) 4.5 0.4 0 0.7 0.4 0.2 1.6 16 58.9 5.3 1.2 1 10.1

85 (60) 15.1 0.2 0 1.4 3.5 0.8 1.1 18 41.6 5.6 0.7 0.5 11.1

85 (80) 3.9 0.3 0.3 0.1 4.7 0.3 0.6 13 21.4 36.1 0.3 3.3 16.3

IPSL

45 (60) 10.2 0 2.5 5.1 0.8 3.3 0.3 14 21.5 30.9 3.7 0.3 7.3

45 (80) 14.9 1 0.1 4.6 0 0.4 1.3 16 16.8 29.2 0.7 4.5 10.7

85 (60) 1 0.3 0.4 5.3 3.8 2.5 1.1 20 21.1 10.7 26.1 2.9 4.5

85 (80) 12.1 0.5 0.9 3.1 1.4 1 17 30 16.9 0.6 3.9 1 11.6

MIRCOS

45 (60) 7.2 0.7 0 0.7 1.1 0.7 1.2 6.1 21.8 37.3 3.1 1.1 19.7

45 (80) 3.4 0.1 0.1 6.8 1 0.9 1.7 9.5 11.2 38.4 1.2 4.7 21

85 (60) 7.2 0 0.1 1.1 5 0.2 1.3 7.1 37.5 19.3 0.4 0.5 20.4

85 (80) 2.7 0.3 0.2 2.4 0.2 0.6 0.7 8.2 32.9 21 0.4 11 19.6

NORSEM

45 (60) 2.1 2.9 0 0.8 2.3 2.1 5.8 3.8 44.7 24.3 0.1 0.8 10.3

45 (80) 3.5 0.7 0 1 3.7 2.7 5.7 6.3 41.1 22 0.5 2.3 10.5

85 (60) 3.6 0.2 0.8 0.8 0.5 0.2 1.1 3.3 73 8.8 0.7 2 5.6

85 (80) 3.6 0.2 0.9 2.4 1.3 0.8 7.6 4.7 54.8 17 0.4 0.5 5.8

BC-1 Annual mean temperature; BC-2 Mean diurnal range; BC-3 Isothermality; BC-4 Temperature seasonality; BC-6 Minimum temperature of coldest month; 
BC -7  Temperature annual range; BC-11 Mean temperature of coldest quarter; Bc-12 Annual precipitation; BC-15 Precipitation seasonality; BC-19 Precipitation 
of coldest quarter; BC-27 Simplified continentality index; BC-29 Mean temperature of coldest month and BC-34 Potential Evapotranspiration Hargreaves
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area under the receiver operating curve (AUC) were used 
to calibrate and validate Maxent model evaluation and 
estimate model prediction accuracy (Elith et al., 2006). The 
performance of the model was classified as failing (0.5-0.6), 
poor (0.6-0.7), fair (0.7-0.8), good (0.8-0.9), or excellent (0.9-
1). The closer the AUC value to 1, the farther away from the 
random distribution, the greater the correlation between 
environmental variables and the predicted geographical 
distribution of species, and the more accurate the 
performance of the model (Mathur et al., 2023). 

The effects of bio-climatic variables on species 
distribution were assessed using Variable Importance values 
and response curves (Mathur and Mathur, 2023). We then 
used ArcGIS to convert the Maxent output ASCII file into 
raster format and used this to categorize the habitat areas 
as optimal (1.0 to 0.80), moderate (0.80 to 0.60), marginal 
(0.60 to 0.40), low (0.40 and 0.20), and absent (< 0.20) for 
this species.

Area -Yield Estimation
A simple regression analysis with Minitab (2016) software 
was used to compare the projected areas and their effects 
on cumin yield under the optimum habitat type. The 
relationships between village/site area (ha.) and cumin 
average yield (kg/ha.) were examined. For both parameters, 
Rajasthan and Gujarat government offices provided 225 site 
data sets. Raster file transformation into Keyhole Markup 
Language (KML) configuration allowed comparative 
visualization of projected changes in the optimum habitat 
type. Current and specific bio-climatic model KML files were 
superimposed, transformed in ArcMap, and saved as tiff files 
(Mathur and Mathur, 2023).

We used WorldClim dataset with two RCPs, 4.5 and 8.5, 
with 2050- and 2070-time frames and five ESMs with both 
RCPs and time frames to study the impact of model types 
and individual use of WorldClim and ESMs on area under 
different habitat suitability classes.

Results
Models performances
Through a comprehensive analysis of diverse sources, we 
found 387 species occurrence sites. After using Wallace 
Software’s spatial thin window feature (Kass et al., 2018), 
we eliminated all but one instance of a record within a 
specific region using a 10-kilometre thinning distance. SDM 
development was completed by including 300 spatially 
autocorrelation-free C. cyminum presence points (Fig. 1D).

Omission-commission plots show cumulative threshold 
selection’s effect on anticipated area and sample point 
autocorrelation (test and training). The test sample omission 
rate should match the projected rate (Mathur et al., 2023). 
With most predictors, test omission lines are well matched 
or above with projected omission (Supplementary Figs 1 to 

7), indicating no sampling autocorrelation and no sampling 
bias in our model attributes. The area under the receiver 
operating curve (AUC) was used to evaluate the Maxent 
model’s performance for predicting distribution of this 
species. Result revealed that that this machine learning 
method performs excellently (AUC > 0.94) with all the 
studied predictors and their AUC curves are depicted in 
Supplementary Figs 8 to 14. 

Variable Importance and Response curves
Table 1 shows the variable importance value of bio-climatic 
variables with different climatic model datasets and RCPs, 
and Supplementary Figs 15 to 29 show the response curves 
of the most influential two variables. WorldClim models for 
current, 2050, and 2070 and future RCPs scenarios showed 
that BC-12 (annual precipitation), BC-15 (precipitation 
seasonality), and BC-19 (coldest quarter precipitation) 
were the most important variables for this species’ habitat 
suitability, with precipitation seasonality being the most 
dominant. In this study, the response curve for precipitation 
seasonality showed that cumin presence increases up to 
150 mm, so this species will survive better in intermediate 
precipitation conditions. Annual precipitation (BC-12) 
response curves with current, 2050 (RCP 2.5, 4.5, 8.5) also 
indicated that the area receiving 450 to 550 mm rainfall 
had the highest probability of its occurrence. Precipitation 
during the coldest quarter (BC-19), the second most 
influential factor for this crop in 2050 (RCP 6.0) and 2070 
(RCP 2.6, 4.5,6.0, and 8.5), and their response curves show 
that this species prefers 5-8 mm of rainfall. 

With other ESMs, like NORSEM, HADGAM [45(60), 45 
(80), 85(60)] and MIRCOS [(85(60) and 85(80)], precipitation 
seasonality was also recorded as most influential factor. 
Among these ESM, NORSEM and MIRCOS showed the 
identical response curves for these variables as with 
WorldClim data set, however occurrence probability 
of cumin is lesser than that of with WorldClim data set. 
Interestingly, HADGAM 45 (60) and 45 (80) exhibited very 
less range for peak occurrence probability as compared to 
other models. Similarly, precipitation of the coldest quarter 
(BC-19) was found to be most influential variable with GFDL-
ESM as well as with  IPSL [45(60), 45(80) and 85(60)] and with 
MIRCOS-ESM particularly with 45(60) and 45 (80) and their 
response curve range are similar to WorldClim data set, 
however, the peak of occurrence probability is smaller with 
these ESMs. With GFDL, MIRCOS, NORESM and HADGEM 45 
(80) and 85 (80), potential evapotranspiration Hargreaves 
was also recorded as influential factor for occurrence 
probabilities of this species.

Area (km2) of different habitat suitability class with 
various bio-climatic models.
Spatial extents of different habitat suitability classes 
identified for C. cyminum with help of MaxENT modelling 
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are depicted in Fig. 2 (with current and 2050 time-frames 
its four RCPs), Fig. 3 (2070 time-frames its four RCPs), Fig. 4 
(GFDL ESM), Fig. 5. (HADGAM ESM); Fig. 6 (IPSL ESM); Fig. 7 
(MIRCOS ESM) and Fig. 8 (NORSEM ESM). Based on cell values 
in raster output processed with ArcMap, we can categorize 
four types of suitability classes with 0.20-point break and 
these were designated as optimum, moderate, marginal 
and low (Mathur and Mathur 2023) and the area under these 
classes (km2) are depicted in Table 2.

Graphical representation of spatial extent of optimum 
suitable habitats was found to be higher in Rajasthan state 
compared to Gujrat state under current and 2050 and 2070 
WorldClim data set. Within these data-set, single continuous 
larger area was observed with current climatic conditions 
which is de-fragmented  into several small populations 
extending at both the states (Fig. 2 and 3) with future 
time-frames. Among the such data-set, higher area under 
optimum (89623.33 km2; 16.64 Per cent optimum cumin 
area with reference to total geographical areas of Rajasthan 
and Gujarat), and moderate (104171.7 km2) suitability classes 
were recorded with 2050 RCP 8.5 and 4.5, respectively. 
While lower areas under these suitability classes were also 
recorded with same time-frame (2050) but with RCP 6.0 
and 2.6, respectively. Interestingly, results revealed the area 
under the optimum class are higher with RCP 8.5 with both 
the future time-frame in comparison to other RCPs scenarios 
(Table 2) and with such result it can be said that this crop 

will show good performance against higher greenhouse 
gas conditions. Higher areas under marginal (108433.9 km2) 
and low (91999.91 km2) class were recorded with current 
bio-climatic conditions (Fig. 2, Table 2). 

Similarly, with ESMs, higher area under optimum 
(246962.1 km2; 45% of total geographical study areas) and 
moderate (186496.4 km2) habitat classes were recorded 
with MIRCOS45(60) ESM (Fig. 7), while the lowest areas 
under these classes (134068.9 km2 and 76626 km2) were 
recorded with GFDL85(60; Fig. 4) and  HADGSM 85(80; 
Fig. 5), respectively. Higher (125005.7 km2) as well as lower 
(54959.87 km2) areas under marginal class were recorded 
with NORESM85(60) and NORESM 45 (80) ESM, respectively 
(Fig. 8). This analysis indicated the decrease of non-suitable 
areas for this crop with other ESM compared to WorldClim 
data set encompassing both current and two future time-
frames and four respective RCPS. Further, range of per cent 
geographical areas of cumin under optimum habitat was 
recorded higher (24.90 to 45.86) with five studied earth 
system models, in comparison to WorldClim (10.38-16.64) 
data sets (Table 2).

Area -Yield Estimation
Regression analysis yield significant linear relationships 
between between area of villages/sites (Ha.) and cumuin 
average yield (kg/ha.) and this relaitonships (Supplementary 
figuere 30) can be equate as 

Fig. 2: Habitat suitability of C. cyminum with current and 2050 time-frames its four RCPs

Fig. 3: Habitat suitability of C. cyminum with current and 2070 time-frames its four RCPs
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Table 2: Area (km2) under different habitat suitability classes calculated with different bio- climatic models. Total geographical area of 
Rajasthan (342239) and Gujarat (196244) is 538483 Km2

 Bio-Climatic Models Optimum Moderate Marginal Low Per cent of optimum cumin area with 
reference to total geographical area

WorldClim Current 72827.01 97553.31 108433.9 91999.91 13.52

2050 RCP 2.6 58283.43 76823.04 72802.89 54599.65 10.82

2050RCP 4.5 77621.71 104171.7 65469.76 47075.38 14.41

2050 RCP 6.0 55911.12 102284.6 76407.01 77864.04 10.38

2050 RCP 8.5 89623.33 86964.15 51211.94 83803.57 16.64

2070RCP2.6 74349.43 77433.97 69356.89 53908.02 13.81

2070 RCP4.5 74145.89 94801.41 48913.03 63967.24 13.77

2070 RCP6.0 74500 94360.5 60744.76 45558.55 13.84

2070 RCP 8.5 84050.36 89353.67 59695.58 78311.14 15.61

GFDL45(60) 173676 109573.2 87584.69 145716.1 32.25

GFDL45(80) 178782.5 97022.43 69942 185083.4 33.20

GFDL85(60) 134068.9 173401.4 76822.86 130838 24.90

GFLD85(80) 170104.7 153232.6 79503.79 94690.18 31.59

HADGSM 45(60) 155075.8 144953.3 71598.04 119254.3 28.80

HADGSM 45(80) 141438.4 123043.7 83335.18 130652.2 26.27

HADGSM 85(60) 176950.4 133939.3 85391.74 73551.69 32.86

 HADGSM 85(80) 198980.2 76626 97975.61 121631.6 36.95

IPSL45(60) 184419.9 102888.2 95343.54 103708 34.25

IPSL45(80) 203160 106134.1 90498.76 100448.1 37.73

IPSL85(60) 160706.6 146080.3 95123.81 95123.81 29.84

IPSL85(80) 219438.6 97785.15 97856.31 121072.6 40.75

MIRCOS45(60) 246962.1 186496.4 112656.9 56140.29 45.86

MIRCOS45(80) 197463.4 108102.4 89920.51 115849.4 36.67

MIRCOS85(60) 183633.3 109833.8 87886.21 111462.4 34.10

MIRCOS85(80) 164490.5 110256.4 118375.8 143026.3 30.55

NORESM45(60) 217094.2 149136.3 114966.2 79519.77 40.32

NORESM45(80) 209111.3 148829.2 54959.87 106591.8 38.83

NORESM85(60) 155563.1 109752.6 125005.7 102631.7 28.89

NORESM85(80) 188765.7 141083 86779.29 56786.85 35.06

Fig. 4: Habitat suitability of C. cyminum with GFDL earth system model its four RCPs
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Table 3: Two-way Analysis of Variance for area (km2) of cumin with 
different model number settings

ESMs models and 
their RCPs ANOVA Variables

Area

Model Habitat types

Both Model
F calculated 2.94* 26.54*

F critical 1.62 2.71

CMCC-BioClimInd 
only

F calculated 0.29NS 36.77*

F critical 1.77 2.76

WorldClim only
F calculated 1.42 NS 6.5*

F critical 2.35 3

*and Bold number represents the significant values at 5% level; NS = 
non-significant

Table 4: Two-way Analysis of Variance for area (km2) for examining 
the effect of EMS and RCP 4.5 and 8.5)

Habitat Suitability

Area (Calculated F values)

ESMs RCP (4.5 and 8.5)

F calculated F calculated

Optimum 9.9* 5.05*

Moderate 2.39 NS 4.77 NS

Marginal 1.79 NS 1.0 NS

Low 3* 3.54 NS

F critical for EMS = 2.81 and 4.84 for RCP; *and Bold number represents 
the significant values at 5% level; NS = non-significant

Comparative results are depicted in Figs 9 to 15 pertaining 
to 2050 RCPs, 2070 RCPs, GFDL, HADGEM, IPSL, MIRCOS 
and NORSEM ESMs, respectively. With current scenario, 
maximum optimum areas come under Jodhpur, Pali, Ajmer, 
Jalor, Nagaur and Parts  of Barmer districts of Rajasthan and 
Amreli, Junagadh and parts of Jamnagar and Bhavnagar (Fig. 
9). With 2050 RCP 2.6, we found -19.57 per cent reduction 
in area and -15.71 in yield as compared to current. With 
this specific time frame and RCP, reduction was mostly 
observed at Jodhpur, Pali and Amreli and Junagadh areas. 
However, some new areas of optimum habitat are occurred 
at Kachchh and Jamnagar areas of Gujarat and Barmer and 
Jalor and Bikaner areas of Rajasthan (Fig. 9a). With RCP 4.5 
of the same time-frame, 6.57 and 5.18 per cent increase in 
area and yield were recorded. Major gain was recorded at 
Kachchh, Jamnagar, Rajkot, Surendra Nagar of Gujarat and 
Barmer and Jalor areas of Rajasthan (Fig. 9b). Similar to RCP 
2.6 of this time-frame, -23.23 and -18.27 per cent reduction 
were recorded in area and yield, respectively, with RCP 6.0. 
Specifically, with this time frame, highest area and yield gain 
+23.06 and +18.14, respectively were recorded with RCP 8.5 
(Fig. 9d) and new areas were majorly occurred at Rajkot, 
Jamnagar, Surendranagar of Gujarat state and Bikaner, 
Jaisalmer and Jalor districts of Rajasthan.
Opposite to 2050, current study revealed the gain in area and 
yield with all four RCPs belongs to 2070 time-frame (Fig. 10 a 

Fig. 5: Habitat suitability of C. cyminum with HADGAM earth system model its four RCPs

Fig. 6: Habitat suitability of C. cyminum with IPSL earth system model its four RCPs
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to d) and the maximum + 11.29 and + 8.86 gain in area and 
yield, respectively was recorded with RCP 8.5, and such gains 
were highlighted at Jamnagar, Rajkot, Kachchh and Banas 
Kantha districts of Gujarat and Barmer and Jalor district of 
Rajasthan. With GFDL-ESM, except 85 (60) more than twice 
the area gain was recorded (Fig. 11 a to d) and among 
them, maximum area +145.49 and excepted yield +114.45 
were recorded with RCP 4.5 (Fig. 11b). Such new areas are 
covering most parts of the Gujarat covering entire Jamnagar, 
Rajkot, Amrelli, Bhavnagar, parts of Surendranagar and Sabar 
Kantha, while at Rajasthan it covering most parts of Barmer, 
some parts of Bikaner, Nagaur, Ajmer and Pali districts. 
Similar higher gain +173.22, +136.27 in area and yield, 
respectively was recorded with HADGEM 85 (80 Fig. 12d). 
However, compared to GFDL 45 (80), additional extension 
of optimum habitat was recorded at Kachchh, Banas Kantha 
areas of Gujarat and Bikaner, Jaisalmer, Sirohi and Rajsamand 
districts of Rajasthan. With IPSL 85(80) +201.31 % increase in 
area and +158.37 % increase in yield (Fig. 13d) were recorded 
and such area increase were observed both at Gujarat 
(Jamnagar, Rajkot, Kachchh, Surendranagar, Patan, Banas 
Kantha and Gandhinagar) and Rajasthan (entire Barmer and 
Jalor, Pali and Jodhpur district and some parts of Jaisalmer 
and Sirohi). Among all studied ESM, 239.11% area gain and 
188.10% gain in yield were recorded with MIRCOS45(60) 
covering entire areas of Jamnagar, Junagadh, Amreli, 
Bhavnagar, Rajkot, Surendranagar, Anand, Gandhinagar, 
Sagar Kantha, Kheda, and some parts of Patan and Bharuch 

in Gujarat state (Fig. 14a) and similarly areas of Jodhpur, and 
parts of Barmer, Nagaur, Pali, Ajmer and Jaisalmer. Similarly, 
results of NORSEM ESM are depicted in Fig. 15 a to d.

ANOVA analysis suggested significant variabilities in 
areas brought by use of combination of both model types 
only, while their individual use were non-significant for areas. 
In comparison to this, impacts of habitat types with different 
setting of model numbers were statistically significant with 
all variables (Table 3). Similar statistical analysis was also 
carried out to examine the impact of ESMs and two RCPs 
namely 4.5 and 8.5 on area under different habitat suitability 
classes. ANOVA result revealed the statistically significant 
result for area under optimum habitat with both types of 
climatic data-sets and their RCPs, while area under moderate 
and marginal habitats these predictors were non-significant 
(Table 4).

Discussion
Climate-based geographic crop modeling is essential for 
predicting the best cultivation sites and yield. This step 
helps sustain food production (Alsafadi et al., 2023). This 
study examined how climatic projections affect cumin’s 
current and future geographical distribution in India’s 
arid and semi-arid regions. This study compares four 
greenhouse gas scenarios (RCP 2.6, 4.5, 6.0, and 8.5) using 
the WorldClim data set for two future time frames and five 
ESMs, CMIP5: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, 
MIROC-ESM-CHEM, and NorESM1-M, from the recently 

Fig. 7: Habitat suitability of C. cyminum with MIRCOS earth system model its four RCPs

Fig. 8: Habitat suitability of C. cyminum with NORSEM earth system model its four RCPs
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Fig. 9: Superimposition of current optimum suitability sites with different RCPs of 2050 time-frames

Fig. 10: Superimposition of current optimum suitability sites with different RCPs of 2070 time-frames

Fig. 11: Superimposition of current optimum suitability sites with GFDL ESM
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Fig. 12: Superimposition of current optimum suitability sites with HADGEM ESM

Fig. 13: Superimposition of current optimum suitability sites with IPSL ESM

Fig. 14: Superimposition of current optimum suitability sites with MIRCOS ESM
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developed BioClimInd dataset for two RCPs, 4.5 and 8.5, of 
two-time frames, 2040-79 (60) and 2060-99 (80). Kogo et 
al. (2019a) used HAdGEM2-ES and CCM4 GCM models with 
RCP 4.5 and 8.5 to compare the current and future maize 
distribution in Kenya. CCSM4 showed minor differences. 
Zhang et al.  (2017), Xu et al. (2021) examined how different 
climatic models affect maize in China, eastern Africa, and 
respectively. Kogo et al. (2019b) examined how climate 
change affects maize growth and productivity across 
regions. They found several effective general circulation 
models (GCMs): ECHAM5, CCSM, HadCM3, CSIRO-MK3, 
CGCM3.1, UKLO, and MIROC3.2. They also recommended 
multi-model ensemble GCMs for crop modeling to improve 
accuracy and reliability. In contrast, Alsafadi et al. (2023) used 
three models from the Coupled Model Intercomparison 
Project Phase 6 (CMIP6): BCC-CS2-MR (Beijing), CanESM5 
(Canadian model), and IPSL-CM6A_LR (France) to simulate 
the effects of predicted climate change on wheat cultivation 
in Syria’s semi-arid southwest. Their study found that the 
Beijing model was more accurate than the others, especially 
for wheat production in the examined area. Koo et al. (2017) 
recommend climatic multi-models with diverse temporal 
frameworks to reduce climate pattern ambiguity. Liu et al. 
(2023) used five GCMs and three CO2 levels for Calligonum 
mongolicum, an arid shrub. GCMs and emission scenarios 
introduce uncertainty, which they discuss. 

The dataset WorldClim 2.1 is widely cited in academic 
literature. This dataset contains 19 bio-climatic variables with 
varying resolutions. These variables cover recent climate 
conditions from 1970 to 2000 and projected future climate 
scenarios for 2021-2040, 2041-2060, 2061-2080, and 2081-
2100. WorldClim uses 9 Generative Circulation and Earth 
System Models to project future climate. They are part of 
the Coupled Model Intercomparison Project Phase 6 (CMIP6), 

which compares and evaluates climate models globally. Note 
that WorldClim has limitations. A major drawback is the lack 
of spatial details needed by models to accurately assess 
climate change impacts. This limitation limits the dataset’s 
ability to predict and account for climate patterns and 
processes’ spatial heterogeneity (Zhang et al., 2023a). When 
considering spatial heterogeneity, a medium-resolution grid 
cell can encompass a climate environment with hundreds 
of meters of elevation difference (Poggio et al., 2017). The 
complex process of plant growth requires considerations 
beyond precipitation and temperature, which may limit 
the 19 bioclimate variables’ ability to simulate plant and 
organism distribution (Mathur and Mathur, 2023). As shown, 
evaporation increases in some regions despite heavy 
precipitation. 

The CMCC-BioClimInd dataset improves community-
valued spatial information accessibility in two ways. First, 
it includes 35 historical and future bioclimatic indicators. 
Second, it uses models and other analytical methods to 
ensure climate change impact assessments are reliable and 
accurate, taking into account uncertainties. 

In this study, under most predictors and according to 
the interpretation criterion, our omission lines are well 
matched or above with projected omission, indicating no 
sampling autocorrelation and no sampling bias in our model 
attributes. Perhaps this is because we cleaned the spatial 
locations of 387 cumin cultivation sites across the study area 
using a spatial auto-correlation filter before performing our 
SDM on a subset of 300 of these sites.

Receiver operating characteristic (ROC) test is threshold-
independent and does not require thresholds for presence 
versus absence predictions (Peterson et al., 2007). The area 
under the curve (AUC) of ROC measures a model’s ability 
to distinguish between species-rich and species-poor sites 

Fig. 15: Superimposition of current optimum suitability sites with NORSEM ESM
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(Elith et al., 2006). The machine learning method excels 
in this study (AUC > 0.94; Mean 0.97±0.01) for all studied 
predictors. Chao-Yun et al. (2012) reported similar SDM 
results for Asian Piper nigrum spice. Zhang et al. (2023b) 
used the AUC tool to compare the WorldClim and CMCC-
BioClimInd datasets efficacy. The researcher classified their 
study using numerical bio-climatic variables. These variables 
included 19 WorldClim variables, CMCC-BioClimInd (1–19 
bio-climatic predictors), CMCC-BioClimInd (1–35 bio-climatic 
predictors), and CMCC. 11 global invasive species were 
studied using these classifications, yielding average AUC 
values of 0.948, 0.951, 0.963, and 0.969. They found that the 
simplified continentality index (the divergence between 
the mean values of the most hot and cold months across 
a given span of years) and modified Kira warmth index 
(energy inputs in the warmest portion of the year), derived 
from CMCC-BioClimInd, were effective explanatory tools.

Response curves have helped quantify the logistic 
probability of species presence and environmental factors. 
This has greatly improved our understanding of the species’ 
complex ecological niche (Mathur et al., 2023). This study 
found that WorldClim dataset annual precipitation (BC-
12), seasonal precipitation (BC-15), and coldest quarter 
precipitation (BC-19) are key factors in cumin species habitat 
suitability. This analysis included the present, 2050-, and 
2070-time frames and four RCP scenarios. Precipitation 
seasonality had the greatest impact on cumin species 
habitat suitability.

Precipitation seasonality measures and analyzes monthly 
precipitation variability over a year. The index is the ratio of 
monthly aggregate precipitation standard deviation to mean 
precipitation (Noce et al., 2020). In fragile ecological systems 
like arid and semi-arid regions, crop productivity depends 
on precipitation timing and quantity during the growth 
cycle. This study stressed the importance of precipitation 
during the growth cycle. Numerous researchers emphasize 
the importance of precipitation in rainfed wheat cultivation 
(Aixia, 2022; Zhang, 2022). Murugan et al. (2022) examined 
how precipitation seasonality affects cardamom distribution 
in southern India under RCP 4.5 and 8.5. Their findings 
show that a significant change in precipitation seasonality 
negatively affects spice cultivation, maturation, and 
productivity. Buckland et al. (2022) reported similar effects 
of precipitation seasonality on Garcinia indica distribution 
in India, Dalbergia latifolia in Nepal, and Opuntia ficus-indica 
and Euphorbia tirucalli worldwide. 

Response curves for three bio-climatic variables help 
us identify cumin’s optimal growing conditions. These 
areas have a precipitation seasonality threshold of 150 
mm (BC-15), an annual precipitation range of 450 to 550 
mm (BC-12), and 5 to 8 mm of rainfall during the coldest 
quarter (BC-19). Precipitation seasonality was also the most 
influential factor for NORSEM, HADGAM [45(60), 45 (80), 

85(60)], and MIRCOS [(85(60) and 85(80)], whose response 
curves were identical to WorldClim but had lower peak 
occurrence probabilities. GFDL, MIRCOS, NORESM, and 
HADGEM 45 (80) and 85 (80) also showed that potential 
evapotranspiration Hargreaves affected species occurrence 
probabilities. The temperature-based Hargreaves equation 
calculates potential evapotranspiration (Hargreaves et 
al., 1985). Mean monthly maximum temperature - mean 
monthly minimum temperature for the month of interest 
and mean air temperature were included.

The cumin plant’s physiological processes and secondary 
metabolite production are affected by many environmental 
stresses. These responses help the plant develop tolerance 
and survive harsh conditions (Pandey et al., 2015). The 
physiological responses of C. cyminum to water stress 
include the synthesis of proline, soluble sugars, and 
essential oils (Kazemi et al., 2018). Water-related variables 
in cumin cultivation have been extensively studied. Under 
experimental control conditions (Mehriya et al., 2020), 
irrigation water and crop evapotranspiration (IW/Etc) 
increased plant height, branch count, and photosynthetic 
rate. Cumin seed yield increased significantly due to these 
improvements. Cumin crop yield attributes and increase 
are due to optimal precipitation and soil moisture levels. 
These conditions promote efficient nutrient uptake and 
a good soil-water air relationship with higher root zone 
oxygen (Mathur, 2013). The root zone’s optimal moisture 
levels boost plant physiological activity and dry matter 
accumulation. The correlation between a consistent 
precipitation pattern throughout the year and cumin 
development during the colder season is linked to many 
complex physiological mechanisms. These mechanisms 
reduce leaching, increase photosynthetic rates, and help 
plants absorb essential nutrients. Due to these factors, 
cumin seed yield increases. Water-related climatic variables 
boost root development and soil moisture extraction. This 
phenomenon may promote abundant vegetative growth 
in water-rich conditions (Mathur and Sundaramoorthy, 
2013). Based on the data, water-related factors rather than 
temperature-related factors determine the likelihood of this 
important crop in the studied reg

MaxENT modelling has revealed the spatial distribution 
of C. cyminum habitat suitability classes. Using the WorldClim 
dataset, the optimal class had greater spatial coverage under 
the RCP 8.5 scenario compared to other RCP scenarios and 
across future time frames. C. cyminum may benefit from 
the “CO2 fertilization effect” and increase crop production 
(e.g., wheat; Alsafadi et al., 2023) under high CO2 conditions. 

Our comparison of optimum habitat spatial extension 
and yield provided useful crop information. Currently, 
Jodhpur, Pali, Ajmer, Jalor, Nagaur, and parts of Barmer in 
Rajasthan and Amreli, Junagadh, and parts of Jamnagar and 
Bhavnagar are the best areas. These findings are supported 
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by Singh and Kumar (2016); Sharma et al, (2018);; Pagaria and 
Sharma (2020). 

With comparative analysis, areas and yield fall under gain 
(+) or loss (-) with different RCPs and datasets could also be 
marked. Area and yield only decreased with 2050 RCP 2.6 
and 6.0. MIRCOS45(60) again recorded maximum area and 
yield in Jamnagar, Junagadh, Amreli, Bhavnagar, Rajkot, 
Surendranagar, Anand, Gandhinagar, Sagar Kantha, Kheda, 
and some parts of Patan and Bharuch in Gujarat, and most 
of western Rajasthan, including Jodhpur, Barmer, Nagaur, 
Pali, and Jaisalmer.

ANOVA analysis of areas affected by models (both ESMs 
and WorldClim, ESMs only, and WorldClim only) and their 
RCPs and habitat types (optimum, moderate, marginal, 
and low) showed significant variabilities in areas caused 
by both model types, but not by their individual use. In 
contrast, habitat types with different model numbers 
affected all variables statistically (Table 3). The effects of 
ESMs and RCPs 4.5 and 8.5 on habitat suitability class area 
were also examined. ANOVA showed that ESMs and RCPs 
were significant for optimum habitat but not moderate or 
marginal habitats (Table 4). 

This species cannot be grown in Rajasthan’s irrigated 
northwest plain (Sriganganagar and Hanumangarh), 
sub-humid southern plain (Bhilwara, Udaipur, and 
Chittorgarh), humid southern plain (Dungarpur, Banswara, 
and Chittorgarh), or humid southeastern plain. The agro-
climatic zonation of Gujarat shows which areas are best for 
cumin cultivation. Salve et al.  (2017) reported rising cumin 
area and yield in Banaskantha district, Gujarat.

WorldClim and CMCC-BioClimInd models had excellent 
model accuracy, but their optimum areas were statistically 
different. Two-way ANOVA analysis is used in previous 
studies to identify the major cause of area uncertainty. 
Real et al. (2010) suggested that GCMs, not CO2 emission 
scenarios, cause climate change modeling uncertainty. In 
their modeling, Hamit et al. (2018), and Zhu (2019) found 
that RCPs or SSPs caused such uncertainty, while GCMs/ESMs 
were ignored. Thus, climate change studies must assess 
the relative contributions of ESMs and RCPs/SSPs. Liu et al., 
(2023) used two-way ANOVA to examine the significance 
of 5 GCMs and 3 SSPs for range dynamics of an arid shrub 
Calligonum mongolicum. Their analysis showed that GCMs 
had a significant impact on gain area, loss area, and total 
area, indicating that selecting these GCMs is uncertain for all 
aspects of range change. SSPs scenarios only affected gain 
and loss areas, not total area. It shows that SSP selection did 
not affect total area simulation but did affect gain and loss 
area estimation.

The current, 2050, and 2070 WorldClim data sets showed 
that Rajasthan had more optimally suitable habitats than 
Gujarat. Under current climate, a single continuous larger 
area was observed in these datasets, but it is expected to 

break up into several small populations across both states 
(Figs 2 and 3). The aforementioned analysis found fewer 
unsuitable regions for growing this crop using alternative 
Earth System Models (ESMs) than the WorldClim dataset. 
Two-way ANOVA analysis showed that using both model 
types (WorldClim + five EMS of CMCC-BioClimInd) together 
caused statistically significant area differences, while using 
either model type alone did not. However, different habitat 
types had statistically significant effects under different 
model numbers. Statistics were also used to examine how 
ESMs and two RCPs, 4.5 and 8.5, affected habitat suitability 
classes. In an ANOVA, both types of climatic data-sets and 
their RCPs showed statistically significant results for the 
area under optimum habitat, but not moderate or marginal 
habitats (Table 4).

Conclusion
With this research, we simulated the habitat suitability and 
estimated climate thresholds for C. cyminum (cumin) crop 
in arid and semi-arid parts of the India. We also projected 
changes in the suitable habitat (particularly optimum) under 
various climate change model and emission scenarios. The 
obtained climatically suitable habitat map and habitat 
change maps could be guiding us to introduce this species 
in new areas of Rajasthan and Gujarat. The obtained 
climate thresholds possess the potential to be utilized 
by policymakers in deducing the appropriateness of the 
habitat for cumin, thereby fortifying the management of 
said regions.
Supplementary Materials: Table 1 and figs 1 to 30
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Supplementary Table 1: Details of 35 bio-climatic variables opted from five earth system models and WorldClim dataset. (Details of each bio-
climatic variables can be found in Noce, S., Caporaso, L. and Santini, M. 2020. A new global dataset of bioclimatic indicators. Scientific Data, 7: 
398 https://doi.org/10.1038/s41597-020-00726-5)

Code Name Unit

Bio1 Annual mean temperature °C

Bio2 Mean diurnal range °C

Bio3 Isothermality %

Bio4 Temperature seasonality °C

Bio5 Maximum temperature of warmest month °C

Bio6 Minimum temperature of coldest month °C

Bio7 Temperature annual range °C

Bio8 Mean temperature of wettest quarter °C

Bio9 Mean temperature of driest quarter °C

Bio10 Mean temperature of warmest quarter °C

Bio11 Mean temperature of coldest quarter °C

Bio12 Annual precipitation mm

Bio13 Precipitation of wettest month mm

Bio14 Precipitation of driest month mm

Bio15 Precipitation seasonality %

Bio16 Precipitation of wettest quarter mm

Bio17 Precipitation of driest quarter mm

Bio18 Precipitation of warmest quarter mm

Bio19 Precipitation of coldest quarter mm

Bio20 Ellenberg quotient °C/mm

Bio21 Yearly positive temperature °C

Bio22 Sum of annual temperature °C

Bio23 Ombrotermic index mm/°C

Bio24 Yearly positive precipitation mm

Bio25 Modified Kira coldness index °C

Bio26 Modified Kira warmth index °C

Bio27 Simplified continentality index °C

Bio28 Mean temperature of warmest month °C

Bio29 Mean temperature of coldest month °C

Bio30 Mean temperature of driest month °C

Bio31 Mean temperature of wettest month °C

Bio32 Modified Thermicity index °C

Bio33 Ombrothermic index of summer and the previous month mm/°C

Bio34 Potential Evapotranspiration Hargreaves mm

Bio35 Potential Evapotranspiration Thornthwaite mm
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Supp. Fig. 4: Analysis of omission/commission with HADGEM earth system model with two time-frames and its  projections

Supp. Fig. 1: Analysis of omission/commission with current and 2050 bio-climatic timeframe and its RCPs projection

Supp. Fig. 2: Analysis of omission/commission with current and 2070 bio-climatic timeframe and its RCPs projection

Supp. Fig. 3: Analysis of omission/commission with GFDL earth system model with two time frames and its  projections
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Supp. Fig. 8: Receiver Operating Characteristic (ROC) curves: with current and 2050 bio-climatic timeframes and RCPs projection

Supp. Fig. 5: Analysis of omission/commission with IPSL earth system model with two time-frames and its  projections

Supp. Fig. 6: Analysis of omission/commission with MIRCOS earth system model with two time-frames and its  projections

Supp. Fig. 7: Analysis of omission/commission with NORSEM earth system model with two time-frames and its  projections
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Supp. Fig. 12: Receiver Operating Characteristic (ROC) curves: with IPSL earth system model using two time frames

Supp. Fig. 9: Receiver Operating Characteristic (ROC) curves: with 2070 bio-climatic timeframes and RCPs projection

Supp. Fig. 10: Receiver Operating Characteristic (ROC) curves: with GFDL earth system model using two time frames

Supp. Fig. 11: Receiver Operating Characteristic (ROC) curves: with HADGEM earth system model using two time frames
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Supp. Fig. 16: Response curves with RCP 2.6 and 4.5 of 2050 bio-climatic time-frame illustrating the likelihood of Cuminum cyminum habitat 
suitability

Supp. Fig. 13: Receiver Operating Characteristic (ROC) curves: with MIRCOS earth system model using two time frames

Supp. Fig. 14: Receiver Operating Characteristic (ROC) curves: with NORSEM earth system model using two time frames

Supp. Fig. 15: Response curves with current-climatic parameters illustrating the likelihood of Cuminum cyminum habitat suitability
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Supp. Fig. 17: Response curves with RCP 6.0 and 8.5 of 2050 bio-climatic time-frame illustrating the likelihood of Cuminum cyminum habitat 
suitability. 

Supp. Fig. 18: Response curves with RCP 2.6 and 4.5 of 2070 bio-climatic time-frame illustrating the likelihood of Cuminum cyminum habitat 
suitability

Supp. Fig. 19: Response curves with RCP 6.0 and 8.5 of 2070 bio-climatic time-frame illustrating the likelihood of Cuminum cyminum habitat 
suitability

Supp. Fig. 20: Response curves with GFDL earth system model with 45 scenario and two time-frame illustrating the likelihood of Cuminum 
cyminum  habitat suitability



Manish Mathur and Preet Mathur Climatic Envelop Modelling of Cuminum cyminum

Indian Journal of Plant Genetic Resources    338      37(2)316-340

Supp. Fig. 21: Response curves with GFDL earth system model with 85 scenario and two time-frame illustrating the likelihood of Cuminum 
cyminum habitat suitability

Supp. Fig. 22: Response curves with HADGEM earth system model with 45 scenario and two time-frame illustrating the likelihood of Cuminum 
cyminum habitat suitability

Supp. Fig. 23: Response curves with HADGEM earth system model with 85 scenario and two time-frame illustrating the likelihood of Cuminum 
cyminum habitat suitability

Supp. Fig. 24: Response curves with IPSL earth system model with 45 scenario and two time-frame illustrating the likelihood of Cuminum 
cyminum habitat suitability
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Supp. Fig. 28: Response curves with NORESDESM earth system model with 45 scenario and two time-frame illustrating the likelihood of 
Cuminum cyminum habitat suitability

Supp. Fig. 25: Response curves with IPSL earth system model with 85 scenario and two time-frame illustrating the likelihood of Cuminum 
cyminum habitat suitability

Supp. Fig. 26: Response curves with MIRCOS earth system model with 45 scenario and two time-frame illustrating the likelihood of Cuminum 
cyminum habitat suitability

Supp. Fig. 27: Response curves with MIRCOS earth system model with 85 scenario and two time-frame illustrating the likelihood of Cuminum 
cyminum habitat suitability
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Supp. Fig. 29: Response curves with NORESDESM earth system model with 85 scenario and two time-frame illustrating the likelihood of 
Cuminum cyminum habitat suitability

Supplementary Fig. 30: Simple regression analysis between area of village (Ha.) and Cuminum cyminum average yield (Kg/ha.) n = 225; R2 
0.75*


