Genetic and Environmental Variability in Sorghum [Sorghum bicolor (L.) Moench] Germplasm Collected from Rajasthan and Madhya Pradesh

M Elangovan*, P Kiran Babu, D Chandra Sekara Reddy, Usha Saxena, G Vincent Reddy and Vilas A Tonapi Directorate of Sorghum Research, Hvderabad-500 030, Andhra Pradesh

(Received: 24 May 2012; Revised: 14 July 2012; Accepted: 19 July 2012)

Sorghum (*Sorghum bicolor* L. Moench) germplasm collections consisting of 80 accessions from Madhya Pradesh and Rajasthan were evaluated during *kharif* 2008 and 2009 (June-October) season for 22 agro-morphological traits using minimal descriptors developed by NBPGR. Analysis of variance showed significant differences among genotypes for 22 traits. Large variation among genotypes was found for the traits *viz.*, days to flowering (49-85 days), leaf length (47-95 cm), leaf width (4.2-8.7 cm), number of leaves per plant (7-15), plant height (165-349 cm), panicle length (8.2-29.4 cm), panicle width (3.5-8.9 cm), 100-seed weight (1.7-3.4 g), days to maturity (101-121 days), stem fresh weight/10 plants) (575-3,225 g) and stem dry weight/10 plants (288-2188 g). Selections can be practiced for traits such as days to flowering, leaf length, leaf orientation, days to maturity and plant height as governed by additive gene action.

Key Words: Cluster analysis, GCV, PCV, Principal components, Sorghum

Introduction

Sorghum [Sorghum bicolor (L.) Moench] is fifth most important cereal crop worldwide after wheat, rice, maize and barley (FAO, 2004). It is grown during rainy and post-rainy seasons in semi-arid regions of the country on the marginal lands. It is better adapted to drought-prone regions with poor soils when compared to other cereal crops. In India, the crop is mostly grown in Maharashtra, Karnataka, Andhra Pradesh, Madhva Pradesh, Rajasthan, Uttar Pradesh, Gujarat and Tamil Nadu. In India it occupies 7.8 million ha. In the light of rapidly increasing human population and expansion of agriculture into marginal areas, the importance of sorghum in semi-arid regions of the world will increase in future (House, 1995). In order to meet the food requirement of the increasing population, development of high yielding varieties is essential. Farmers and breeders use local cultivars or landraces for varietal improvement programmes. They are morphologically similar or different as they are adapted to particular environments. For the present study traditional cultivars or primitive cultivars or local landraces or farmer's variety of sorghum were collected from Rajasthan and Madhya Pradesh and evaluated at the Directorate of Sorghum Research, Hyderabad.

Materials and Methods

The sorghum germplasm collections consisting of 80 accessions from Rajasthan and Madhya Pradesh were the base material used for evaluation. The germplasm

Indian J. Plant Genet. Resour. 26(1): 19-24 (2013)

bicolor (8), durra (40), durra-bicolor (6), durra-caudatum (24), and guinea-caudatum (2) (Table 1). These accessions were evaluated in *kharif* 2008 and 2009 (June-October) season at the New area field farm of Directorate of Sorghum Research, Rajendranagar, Hyderabad located at latitude 17⁰ 19' 28.5" N and longitude 78⁰ 24' 13.4" E at an altitude of 524 m msl. The seed material was sown in augmented block design plots with two replications in both the growing seasons. Each genotype was sown in three rows, 5 m long, with a row-to-row spacing of 45 cm, and plant-to-plant spacing within a row, of 15 cm. Recommended cultural practices were followed to raise the crop. The data were recorded in each genotype on 22 agro-morphological traits following minimal descriptor developed by National Bureau of Plant Genatic Resources (Mahajan et al., 2000). Five representative plants in each accession were tagged for recording the qualitative and quantitative traits. The seedling vigour was recorded in 14-days-old seedlings. The midrib colour was recorded in the one month aged seedlings. The data on days to 50% flowering was recorded during the panicle emergence stage. The leaf orientation, leaf length (cm), and leaf width (cm), number of leaves, plant height (cm), were recorded during the physiological maturity stage. The earhead shape, compactness, length (cm) and width (cm) were counted during the maturity stage. The stem fresh weight (g), stem dry weight (g) and 100-seed weight (g) were measured after the harvesting. The glume colour,

collection represented all the basic races of sorghum viz.,

14.139.224.50 on dated 13-Feb-2023

No

^{*}Author for Correspondence: E-mail: elangovan@sorghum.res.in

SI. No.	Genotype	National Indentity Number	State	District	Race	SI. No.	Genotype	National Indentity Number	State	District	Race
1	E 1	IC 338968	Rajasthan	Udaipur	Durra	33	EJ 22	IC 339002	Rajasthan	Pali	Durra
2	E 2	IC 338969	Rajasthan	Udaipur	Durra- caudatum	34	EJ 23	IC 339003	Rajasthan	Pali	Durra- caudatum
3	E 3	IC 338970	Rajasthan	Udaipur	Durra	35	EJ 24	IC 339004	Rajasthan	Pali	Durra
4	E 4	IC 338971	Rajasthan	Udaipur	Durra-	36	EJ 25	IC 339005	Rajasthan	Pali	Durra
5	Е 5	IC 338972	Rajasthan	Udaipur	caudatum Durra-	37	EJ 26	IC 339006	Rajasthan	Pali	Durra
5	ĽЭ	IC 556972	Kajastilali	Odalpui	caudatum	38	EJ 27	IC 339007	Rajasthan	Pali	Durra
6	Е 7	IC 338973	Rajasthan	Rajsamand	Durra	39	EJ 28	IC 339008	Rajasthan	Pali	Durra
7	E 9	IC 338974	Rajasthan	Rajsamand	Durra	40	EJ 29	IC 339009	Rajasthan	Pali	Durra-
8	E 11	IC 338976	Rajasthan	Rajsamand	Bicolor	41	EJ 30	IC 339010	Rajasthan	Pali	caudatum
9	E 12	IC 338977	Rajasthan	Rajsamand	Durra-	41	EJ 30	IC 339010 IC 339011	Rajasthan	Pali	Durra Durra
10	E 13	IC 338978	Rajasthan	Rajsamand	caudatum Bicolor	42	EJ 32	IC 339011 IC 339012	Rajasthan	Pali	Durra
11	E 13 E 14	IC 338979	Rajasthan	Rajsamand	Durra	43	EJ 32	IC 339012 IC 339013	Rajasthan	Pali	Durra
12	E 14	IC 338980	Rajasthan	Rajsamand	Bicolor	44	EJ 33	IC 339013 IC 339014	Rajasthan		Durra
12	EJ2	IC 338982	Rajasthan	Udaipur	Durra-	43	EJ 34			Nagaur	
15	LJ Z	IC 556962	Rajastilaii	Odalpui	caudatum	40 47	EJ 35 EJ 36	IC 339015 IC 339016	Rajasthan	Nagaur Nagaur	Durra Durra
14	EJ 3	IC 338983	Rajasthan	Pali	Durra-	47	EJ 50	10 339010	Rajasthan	Inagaui	bicolor
15	EJ 4	IC 338984	Rajasthan	Pali	caudatum Guinea-	48	EJ 37	IC 339017	Rajasthan	Nagaur	Durra
10	201	10 550701	Rujustiiuii	1 411	caudatum	49	EJ 38	IC 339018	Rajasthan	Nagaur	Durra
16	EJ 5	IC 338985	Rajasthan	Pali	Durra- caudatum	50	EJ 39	IC 339019	Rajasthan	Ajmer	Durra
17	EJ 6	IC 338986	Rajasthan	Pali	Durra- caudatum	51	EJ 40	IC 339020	Rajasthan	Ajmer	Durra- caudatum
18	EJ 7	IC 338987	Rajasthan	Sirohi	Durra	52	EJ 41	IC 339021	Rajasthan	Tonk	Durra- caudatum
19	EJ 8	IC 338988	Rajasthan	Sirohi	Durra	53	EJ 42	IC 339022	Rajasthan	Tonk	Durra
20	EJ 9	IC 338989	Rajasthan	Sirohi	Durra				2		bicolor
21	EJ 10	IC 338990	Rajasthan	Sirohi	Bicolor	54	EJ 43	IC 339023	Rajasthan	Tonk	Durra- caudatum
22	EJ 11	IC 338991	Rajasthan	Sirohi	Bicolor	55	EJ 44	IC 339024	Rajasthan	Bhilwara	Durra
23	EJ 12	IC 338992	Rajasthan	Sirohi	Bicolor	56	EJ 45	IC 339025	Rajasthan	Bhilwara	Durra
24	EJ 13	IC 338993	Rajasthan	Sirohi	Durra						bicolor
25	EJ 14	IC 338994	Rajasthan	Sirohi	Durra	57	EJ 46	IC 339026	Rajasthan	Bhilwara	Durra
26	EJ 15	IC 338995	Rajasthan	Sirohi	Durra- caudatum	58	EJ 47	IC 339027	Rajasthan	Bhilwara	Durra bicolor
27	EJ 16	IC 338996	Rajasthan	Sirohi	Durra	59	EB 1	IC 332460	Madhya Pradesh	Indore	Durra- caudatum
28	EJ 17	IC 338997	Rajasthan	Sirohi	Durra	60	EB 2	IC 332461	Madhya	Indore	Durra-
29	EJ 18	IC 338998	Rajasthan	Sirohi	Durra	(1		10.2224/2	Pradesh	DI	caudatum
20	EI 10	10 220000	Daia d	D-1:	bicolor	61	EB 3	IC 332462	Madhya Pradesh	Dhar	Durra- caudatum
30 31	EJ 19 EJ 20	IC 338999 IC 339000	Rajasthan Rajasthan	Pali Pali	Durra Durra-	62	EB 4	IC 332463	Madhya Pradesh	Dhar	Durra- caudatum
32	EJ 21	IC 339001	Rajasthan	Pali	caudatum Durra	63	EB 5	IC 332464	Madhya Pradesh	Dhar	Bicolor

Table 1. List of accessions collected from two states with racial classification

Indian J. Plant Genet. Resour. 26(1): 19-24 (2013)

www.IndianJournals.com Members Copy, Not for Commercial Sale Downloaded From IP - 14.139.224.50 on dated 13-Feb-2023

	SI. No.	Genotype	National Identity Number	State	District	Race
	64	EB 6	IC 332465	Madhya Pradesh	Dhar	Bicolor
	65	EB 7	IC 332466	Madhya Pradesh	Dhar	Durra- caudatum
	66	EB 8	IC 332467	Madhya Pradesh	Dhar	Durra- caudatum
	67	EB 9	IC 332468	Madhya Pradesh	Dhar	Durra
	68	EB 10	IC 332469	Madhya Pradesh	Dhar	Durra
	69	EB 11	IC 332470	Madhya Pradesh	Dhar	Guinea- caudatum
	70	EB 12	IC 332471	Madhya Pradesh	Dhar	Durra bicolor
	71	EB 13	IC 332472	Madhya Pradesh	Jhabua	Durra- caudatum
123	72	EB 14	IC 332473	Madhya Pradesh	Jhabua	Durra
3-Feb-2(73	EB 15	IC 332474	Madhya Pradesh	Jhabua	Durra
dated 1	74	EB 16	IC 332475	Madhya Pradesh	Jhabua	Durra
24.50 on	75	EB 17	IC 332476	Madhya Pradesh	Jhabua	Durra- caudatum
14.139.2	76	EB 18	IC 332477	Madhya Pradesh	Jhabua	Durra
Downloaded From IP - 14.139.224.50 on dated 13-Feb-2023	77	EB 19	IC 332478	Madhya Pradesh	Jhabua	Durra
paded Fr	78	EB 20	IC 332479	Madhya Pradesh	Jhabua	Durra
Downk	79	EB 21	IC 332480	Madhya Pradesh	Jhabua	Durra- caudatum
	80	EB 22	IC 332481	Madhya Pradesh	Dhar	Durra

www.IndianJournals.com Members Copy, Not for Commercial Sale

glume coverage, presence of awns, grain color, grain size and grain lustrous were observed after the harvesting stage. For qualitative and quantitative traits data, average of five plants per genotype, were computed and these were used for statistical analyses.

Analysis of variance (ANOVA) was carried out assuming season effects as random, and cultivar effects as fixed. The homogeneity of error variance was established as per Gomez and Gomez (1984). Coefficient of variation (CV%), phenotypic coefficient of variation (PCV), genotypic coefficient of variation (GCV) and heritability in broad-sense (h^2) were calculated according to the procedure described by Singh and Chaudhary (1985), and expected genetic advance (GA) as suggested by Johnson et al. (1995). The data were subjected to multivariate

Results and Discussion

Genetic Variability

Analysis of variance showed significant differences among genotypes for all traits studied. Large variation among genotypes was found for the traits, days to flowering (49-85 days), leaf length (47-95 cm), leaf width (4.2-8.7 cm), number of leaves per plant (7-15), plant height (165-349 cm), panicle length (8.2-29.4 cm), panicle width (3.5-8.9 cm), 100 seed weight (1.7-3.4 g), days to maturity (101-121 days), stem fresh weight/10 plants) (575-3225 g) and stem dry weight (288-2188 g) (Table 1). Analysis of variance showed significant differences among the genotypes for 22 traits. Significant GxE interactions for leaf length and leaf width of the plants were observed.

Genetic Diversity

Phenotypic and genotypic co-efficient of variations, heritability and genetic gain were calculated following Burton and De Vane (1953). Significant differences were observed among the genotypes for all the characters indicating presence of adequate genetic variability in the experimental material. The genetic constants for the characters revealed that the magnitude of phenotypic co-efficient of variation (PCV) was higher than the corresponding genotypic co-efficient of variation (GCV) denoting environmental factors influencing their expressions to some degree or other. Narrow difference between PCV and GCV suggested their relative resistance to environmental alteration. In the present study, the PCV and GCV were higher for days to 50% flowering, leaf length, leaf width, number of leaves, plant height, earhead length, earhead width, 100-seed weight, days to maturity, stem fresh weight, stem dry weight, vigour, leaf orientation, midrib colour, earhead shape, earhead compactness, glume colour, glume covering (Table 2). High amount of GCV and PCV suggested greater scope for selection of superior genotypes for these traits. The lower degree or equal GCV and PCV for presence of awns, grain size, grain color and grain lustrous indicated that improvement for such traits might be achieved only

Tradesh											
Traits	Mean	C.V.	C.D 5%	Range	Variance (Genotypical)	Variance (Phenotypical)	ECV	GCV	PCV	h ² percentage (Broad sense)	Genetic advance as % of mear (5%)
Days to 50% flowering (days)	66.90	10.07	9.38	49-85	55.55	100.90	10.07	11.14	15.02	55.00	17.03
Leaf length (cm)	70.99	12.04	11.91	46.6- 94.5	127.55	200.65	12.04	15.91	19.95	64.00	26.13
Leaf width (cm)	6.21	15.09	1.30	4.2-8.7	0.54	1.41	15.09	11.81	19.16	38.00	14.98
Number of leaves	10.39	15.16	2.19	7-15	3.89	6.37	15.16	18.97	24.28	61.00	30.52
Plant height (cm)	252.62	10.84	38.16	165- 349.1	2258.62	3009.10	10.84	18.81	21.72	75.00	33.58
Earhead length (cm)	16.57	14.95	3.45	8.2- 29.4	27.29	33.42	14.95	31.53	34.90	82.00	58.69
Earhead width (cm)	5.55	15.39	1.19	3.5-8.9	1.03	1.76	15.39	18.33	23.93	59.00	28.92
100-Seed weight (g)	2.40	20.66	0.69	1.7-3.4	0.12	0.37	20.66	14.59	25.29	33.00	17.33
Days to maturity (days)	109.16	4.83	7.34	101- 121	26.55	54.31	4.83	4.72	6.75	49.00	6.80
Stem fresh weight (g)	1632.66	40.44	919.78	575- 3225	338238.10	774205.00	40.44	35.62	53.89	44.00	48.50
Stem dry weight (g)	937.00	52.49	685.10	288- 2188	150568.30	392442.50	52.49	41.41	66.86	38.00	52.84
Vigour	2.71	2.06	0.08	2-3	0.21	0.21	2.06	16.74	16.86	99.00	34.22
Leaf orientation	1.10	5.07	0.08	1-2	0.09	0.09	5.07	27.27	27.74	97.00	55.24
Midrib colour	1.28	4.37	0.08	1-2	0.20	0.20	4.37	35.00	35.28	99.00	71.55
Earhead shape	3.77	1.48	0.08	2-7	2.58	2.58	1.48	42.59	42.61	100.00	87.68
Earhead compactness	1.75	3.19	0.08	1-3	0.52	0.52	3.19	41.16	41.28	99.00	84.53
Glume colour	4.65	1.20	0.08	2-10	7.93	7.93	1.20	60.51	60.53	100.00	124.64
Glume covering	2.33	2.40	0.08	1-4	0.85	0.85	2.40	39.52	39.60	100.00	81.27
Awns	0.73	0.00	-	0-1	0.20	0.20	0.00	61.98	61.98	100.00	127.67
Grain size	5.83	0.00	-	3-9	3.01	3.01	0.00	29.77	29.77	100.00	61.33
Grain colour	3.09	0.00	-	1-14	9.90	9.90	0.00	101.93	101.93	100.00	209.97
Grain Iustrous	0.16	0.00	-	0-1	0.14	0.14	0.00	228.45	228.45	100.00	470.61

Table 2. Genetic variability, heritability and genetic advance for different traits in sorghum germplasm collected from Rajasthan and Madhya Pradesh

up to some extent. Similar findings were also obtained by Warkad *et al.* (2008). Equal GCV and PCV was observed in sorghum for plant height up to base of flag leaf, stigma length, plant height, panicle length (Reddy, *et al.*, 2009). High GCV and PCV values were found for grain lustrous.

The determination of the heritable portions is not based only on the estimation of the GCV and PCV. The estimation of heritability along with the coefficient of variability would mean the amount of advance expected. Burton (1952) also suggested that GCV and heritability estimate would give better information about the efficiency of the selection. The heritability ranged from 33 (100-seed weight) to 100 (earhead shape, glume colour, glume covering, presence of awns, grain size, grain colour and grain lustrous). The utility of heritability is increased when it is used to estimate genetic advance (Johnson *et al.*, 1995). The genetic advance has an added edge over heritability as a guiding factor to breeders in selection programme. High heritability coupled with high genetic advance and GCV was noticed for grain colour, grain lustrous, presence of awns, earhead shape and earhead compactness.

www.IndianJournals.com Members Copy, Not for Commercial Sale Downloaded From IP - 14.139.224.50 on dated 13-Feb-2023

Table 4. Matrix of principal components of 22 variables for 80 sorghum germplasm

S. No	Variable	PC I	PC I	PC II	PC III	PC IV
1	Days to flowering (days)	66.71	66.71	66.66	68.70	72.75
2	Leaf length (cm)	70.69	70.69	71.88	70.24	77.05
3	Leaf width (cm)	6.18	6.18	6.23	6.30	6.53
4	Number of leaves (No)	10.36	10.36	10.54	9.95	11.75
5	Plant height (cm)	255.00	255.00	254.46	212.95	283.63
6	Earhead length (cm)	14.77	14.77	20.92	20.10	27.13
7	Earhead width (cm)	5.52	5.52	5.90	4.66	5.50
8	100-Seed weight (g)	2.45	2.45	2.28	2.22	2.53
9	Days to maturity (days)	109.32	109.32	109.10	106.65	114.00
10	Stem fresh weight (g)	1635.97	1635.97	1641.18	1440.00	2262.50
11	Stem dry weight (g)	944.58	944.58	943.01	772.50	1225.00
12	Vigour	2.81	2.81	2.46	2.40	2.00
13	Leaf orientation	1.13	1.13	1.13	1.00	1.00
14	Midrib colour	1.20	1.20	1.43	1.80	2.00
15	Earhead shape	3.24	3.24	4.93	5.15	7.00
16	Earhead compactness	1.47	1.47	2.41	2.60	3.00
17	Glume colour	4.34	4.34	4.60	8.40	7.00
18	Glume covering	2.28	2.28	2.60	1.80	4.00
19	Awns	0.87	0.87	0.53	0.00	0.00
20	Grain size	6.41	6.41	4.78	3.80	3.00
21	Grain colour	1.49	1.49	8.16	2.00	14.00
22	Grain lustrous	0.24	0.24	0.07	0.00	0.00

two years during the seasons were grouped into four clusters based on D^2 values (Table 5). The distribution pattern indicated that the maximum number of genotypes were included in cluster I with 57 genotypes, followed by cluster II having 17 genotypes and cluster III having five genotypes. The cluster IV has only one genotype i.e. E 11 (IC 338976). The cluster distance ranged from 2218.3 to 4640.8 within the clusters and 5972.5 to 45279.1 between clusters (Table 6). The inter-cluster distance were higher than intra-cluster distance, which indicated

S. No	Variable	PC I	PC II	PC III	PC IV
1	Days to flowering (days)	0.00057	0.01386	0.00582	0.02258
2	Leaf length (cm)	0.00268	0.01832	0.00261	0.04537
3	Leaf width (cm)	0.00112	-0.00036	0.00006	-0.0019
4	Number of leaves (No)	0.00099	0.01327	-0.00521	0.01596
5	Plant height (cm)	-0.0014	0.017	-0.01088	0.03573
6	Earhead length (cm)	0.02035	0.00138	0.052	-0.00346
7	Earhead width (cm)	0.00017	0.01594	-0.02072	0.03526
8	100-Seed weight (g)	0.00098	0.01308	-0.00074	0.01583
9	Days to maturity (days)	0.00185	0.01422	0.00039	0.02041
10	Stem fresh weight (g)	0.00167	0.01122	-0.00007	0.01314
11	Stem dry weight (g)	0.00018	-0.00232	0.00354	-0.00118
12	Vigour	-0.02405	-0.01468	-0.03671	0.03878
13	Leaf orientation	-0.0047	-0.02125	-0.03358	0.03687
14	Midrib colour	0.01223	-0.02898	0.05501	-0.03703
15	Earhead shape	0.14817	-0.10351	0.65734	0.35008
16	Earhead compactness	0.00763	0.04441	-0.02309	-0.07413
17	Glume colour	0.06074	-0.88706	-0.33683	0.12449
18	Glume covering	-0.02576	-0.05567	-0.28149	-0.40529
19	Awns	-0.09534	0.2362	-0.16442	0.14118
20	Grain size	-0.16693	0.28583	-0.52977	0.63239
21	Grain colour	0.71544	0.2335	-0.23924	-0.30342
22	Grain lustrous	-0.65088	0.04548	0.03035	-0.41213
	Root	213350.5	40488.19	32098.16	11047.6
	% Var. Exp.	69.21899	13.1359	10.41386	3.58426
	Cum. Var. Exp.	69.21899	82.35486	92.76874	96.353

wide genetic diversity among the accessions of different groups than those of same cluster. The least intra-cluster distance among the accessions was 2218.3. In cluster I, there was lack of variation among the accessions.

The diversity among the present set of material was also supported by the appreciable amount of variation among cluster means for different characters (Table 4). The cluster which is diverse from other clusters

www.IndianJournals.com Members Copy, Not for Commercial Sale Downloaded From IP - 14, 139.224.50 on dated 13-Feb-2023

Table 5. Grouping of genotypes into different clusters

Cluster	Genotype Name
I	EJ 26 (IC 339006), EJ 27 (IC 339007), EJ 24 (IC 339004), E 9 (IC 338974), EJ 6 (IC 338986), EJ 15 (IC 338995), EJ 17 (IC 338997), EJ 22 (IC 339002), EJ 32 (IC 339012), EB 3 (IC 332462), EJ 19 (IC 338999), EB 16 (IC 332475), EB 21 (IC 332480), E 7 (IC 338973), EJ 30 (IC 339010), EJ 36 (339016), EJ 33 (IC 339013), EJ 21 (IC 339001), EJ 29 (IC 339009), EJ 23 (IC 339003), EJ 20 (IC 339000), EJ 5 (IC 338985), EJ 39 (IC 339019), EJ 3 (IC 338983), EJ 14 (IC 338994), EB 14 (IC 332473), EJ 8 (IC 338988), EJ 16 (IC 338996), EB 19 (IC 332478), EJ 38 (IC 339018), EJ 31 (IC 339011), EJ 35 (IC 339015), EB 9 (IC 332468), EJ 47 (339027), EJ 41 (IC 339021), EJ 7 (IC 338987), EB 1 (IC 332460), EB 15 (IC 332474), EJ 42 (IC 339022), E 2 (IC 338969), EJ 37 (IC 339017), EJ 45 (IC 339025), EB 10 (332469), E 5 (IC 338972), E 4 (IC 338971), EB 20 (IC 332479), EB 4 (IC 332463), EJ 40 (IC 339020), EB 22 (IC 332461), EB 5 (IC 332464), EJ 25 (IC 339005), EB 2 (IC 332461), EB 7 (IC 332466), EJ 34 (IC 339014), EJ 2 338982), EB 13 (IC 332472), EJ 12 (IC 332471)
п	E = 10 (10 000 m), E = 10 (10 000 m

 II EJ 44 (IC 339024), EJ 46 (IC 339026), EB 18 (IC 332477), E 1 (IC 338968), EJ 28 (IC 339008), E 12 (IC 338977), EB 8 (IC 332467), EB 12 (IC 332471), EB 6 (IC 332465), EB 11 (IC 332470), E 14 (IC 338979), EJ 43 (IC 339023), E 13 (IC 338978), EJ 11 (IC 338991), EJ 18 (IC 338998), EJ 10 (IC 338990), EJ 9 (IC 338989)

IV E 11 (IC 338976)

has different mean values for leaf width, number of leaves, earhead length, earhead width, 100-seed weight, stem fresh weight, stem dry weight, midrib colour, earhead shape, earhead compactness, glume colour, glume covering, awns, grain size, grain colour, and grain lustrous. Cluster IV also was diverse from other clusters due to different cluster mean values for days to flowering, leaf length, leaf orientation, days to maturity, plant height. Exploitation of genetic resources within and among these contrasting pools of diversity may provide a different source of germplasm with combination traits for utilization in the sorghum improvement programme. Landraces adapt to different climatic conditions which may be used for developing improved cultivars for yield. Selection for the traits plant height, grain weight can be practiced and incorporated easily as the traits

Table 6. Average intra (bold) and inter cluster distances for 80 genotypes of sorghum *(Tocher method)*

Cluster	Ι	II	III	IV
Ι	2218.26	15318.97	5972.54	45279.08
Π		4640.78	11191.85	12563.12
III			3259.75	32376.30
IV				0

are governed by additive gene action. The traits glume colour, awns, grain colour, grain lustrus are governed by the non-additive gene effects and can be made use for developing distinct variety.

References

- Burton, GW (1952) Quantitative in heritance in grasses. *Proc* 6th Int. Grassland Cong. 1: 77-283.
- Burton GW and EH Devane (1953) Estimating heritability in tall fescue from replicated clonal material. *Agron. J.* **45:** 478-481.
- FAO (2004) *Production Year Book*. Food and Agriculture Organization of the United Nation Rome, Italy.
- Gomez KA and AA Gomez (1984) Statistical Procedures for Agricultural Research (2nd edn.), John Wiley & Sons, New York.
- Hair JFJr, RE Andreson and RL Tatham (1987) *Multivariate Data Analysis with Readings*. Macmillan Publ. Co., New York.
- House LR (1995) Sorghum. One of the world's great cereals. African Crop Sci. J. 3: 135-142.
- Indostat (2004) Indostat package for data analysis. M M Khetan, Ameerpet, Hyderabad, India.
- Johnson HW, HF Robinson and RW Camstock (1995) Estimates of genetic and environmental variability in soybeans. *Agron.* J. 47: 314-318.
- Mahajan RK, RL Sapra, Umesh Srivastava, Mahendra Singh and GD Sharma (2000) *Minimal Descriptors (for characterization and evaluation) of Agri-Horticultural Crops (Part I)*. National Bureau of Plant Genetic Resources, New Delhi, 230p.
- Mahalanobis PC (1949) Historical note on the D² statistic. *Sankhya* **91:** 237-239.
- Panse VG (1957) Genetics of quantitative characters in relation to plant breeding. *Indian J. Genet.* **17:** 318-328.
- Prakash S, SP Sharma and M Dadlani (2007) Testing of plant varieties for distinctiveness, uniformity - Principles and application. Team of Excellence, Division of Seed Science & Technology, IARI, New Delhi, pp 37-41.
- Rao CR (1964) The use and interpretation of principal analysis in applied research. Sankhya 22: 329-358.
- Reddy DCS, S Audilakshmi and N Seetharama (2009) Genetic variability and divergence for DUS testing traits in sorghum (Sorghum bicolor). Indian J. Agric. Sci. 79: 286-290.
- Singh RK and BD Chaudhary (1985) *Biometrical Methods in Quantitative Genetic Analysis*. Kalyani Publisher, New Delhi, 54p.
- Warkad YN, NR Potdukhe, AM Dethe, PA Kahate and RR Kotgire (2008) Genetic variability, heritability and genetic advance for quantitative traits in sorghum germplasm. *Agril. Sci. Digest* 28: 165-169.
- Watson S, J Ward and STC Weathurup (1998) Distinctness, uniformity and stability trail (DUST) analysis system. UPOV TWC 16/9.

www.IndianJournals.com Members Copy, Not for Commercial Sale Downloaded From IP - 14.139.224.50 on dated 13-Feb-2023

III EJ 4 (IC 338984), EB 17 (IC 332476), E 3 (IC 338970), EJ 13 (IC 338993), E 15 (IC 338980)