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In Vitro Propagation and Conservation of Tropical RTBs
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Staple clonally propagated crops such as root, tuber,
banana and plantain (RTBs) crops are subjected to genetic
erosion and variety loss under the pressure of many
factors. The combination of these includes habitat loss
and climate change including increased pest and diseases
incidence. Safeguarding genetic resources of those food
security crops for future use is critical through ensuring
their sustainable conservation and use, for global food
and nutrition security.

The first conservation system for RTBs crop
diversity is in situ especially for crop wild relatives. But
in situ conservation of these world important food crop
genepools is highly under-resourced and inadequately
managed. Therefore, ex situ conservation is key to holding
materials in genebanks or seed banks (conserved as seeds,
field plants, vegetative shoots in vitro or cryopreserved
materials) that are also backed-up in another location.

In general, clonally propagated crops (produce very
few seeds, are vegetatively propagated for breeding
reasons and/or species that require a long life cycle to
generate breeding and/or planting materials) such as
RTBs, essentially, are not conserved as orthodox seeds.
The germplasm is either conserved as live plants in
fields, as potted plants in enclosed structures or different
plant parts are conserved into in vitro, either in slow
growth (medium term) or cryopreservation (long-term).
Traditionally, the conservation and maintenance of
root and tuber crops is done in field conditions. Many
technical guidelines and training manuals exist for the
management of RTBs germplasm collections held in
field genebanks (Reed et al., 2004a; Geburek and Turok,
2005). However, major challenges of field conservation
of RTBs are long reproductive cycles, associated with
low multiplication rate, high cost, pest and diseases,
mislabelling and duplication leading to germplasm
losses. These disadvantages are magnified by climatic
factors.
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In vitro biotechnological approaches are reliable,
complementary and/or alternative system to support
multiplication, safer and longer conservation RTBs
genetic diversity, and their sustainable utilisation. They
have the potential to address future, technical, scientific,
economical and environmental demands on RTBs (Pilatti
et al., 2011).

In vitro Propagation of RTB Crops

The major advantage of in vitro propagation of RTBs
material is the potential of large multiplication for
the seed system, e.g. as an efficient and cost-effective
propagation system (Asiedu et al., 1998; Quin, 1998;
Thro et al., 1999). The latter authors report two projects
in Latin America that used cassava in vitro culture
to address priorities of small-scale cassava farmers.
Cassava propagation is generally done using lignified
stem cuttings (Thro et al., 1999). The multiplication rate
is as low as 1:10 compared to at least 1: 100 in some
cereals, creating a bottleneck for transfer and adoption
of new varieties.

Tissue culture techniques have been used for RTB
multiplication via organogenesis, mainly from younger
and vigorous mother plants that might allow higher
micropropagation rate (Mitchell ez al., 2006). For yams,
pre-formed meristems (Malaurie ef al., 1995a, b), shoot
organogenesis from immature leaves (Kohmura et al.,
1995), roots (Twyford and Mantell, 1996) shoot/nodes
culture and microtuber formation (Balogun et al.; 2006;
Ovono, 2007; Salazar and Hoyos, 2007) have been
used to initiate in vitro multiplication. When the culture
medium is supplemented with gibberellin inhibitors,
shoots from nodal explants in (Poornima et al., 2007)
and numerous axillary nodes (Bimbaun et al., 2002;
Balogun, 2005) were reported in many yam species.

Among the various in vitro propagation techniques
for RTBs, synthetic seeds (Standardi and Piccioni, 1998)
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can be cited and recently somatic embryogenesis. Somatic
embryos were induced from leaf tissues of D. rotundata
in culture medium containing 2.4-D and incubated in
darkness. However, low induction frequencies (<30%)
were recorded and protocols need to be optimized. In
D. alata and D. opposita, embryogenic cell masses were
induced from root explants in liquid MS supplemented
with 2.4-D and cultured in light (Twyford and Mantell,
1996; Nagasawa and Finer, 1989). Germination of
somatic embryos of D. alata increased in the presence
of GA; (Deng and Cornu, 1992; Twyford and Mantell,
1996). Plantlet recovery from somatic embryos of D.
rotundata was enhanced at 4.5% sucrose but not affected
by benzylaminopurine (Okezie et al., 1994; Pandro et
al.,2011). These reports pointed out probable genotype-
dependent protocol for yam embryogenesis.

Photoautotrophic propagation (PAP) is another
system that should be used for RTBs. In PAP system,
explants are directed towards autotrophy while in
culture by reducing or completely substituting sucrose
with carbon dioxide. Plantlet growth is enhanced in
photoautotrophic more than heterotrophic conditions if
environmental control is adequate (Hazarika et al., 2003;
Xiao, 2004, Afreen, 2005). However, after about four
weeks, plants may stop responding to carbon dioxide
and growth is reduced due to slight closing of stomata
on the bottom of the leaves as plants sense high CO,.
However, use of CO, enrichment for two weeks, then
a week off intermittently will ensure higher yields as
the plant continuously seeks as much CO, as possible
(Andrew, 2002). In potatoes, much work has been done
on PAP and photo-mixotrophic propagation (Mohamed
and Alsadon, 2010; Santana et al., 2012).

The use of temporary immersion bioreactor systems
(TIS) allowed handling of the culture by robotization,
while optimizing multiplication rate of plantlet and
microtuber production and sprouting (Cabrera et al.,
2011; Watt, 2012). In TIS, growth is enhanced (Escalona,
2006) since there is lack of continuous immersion
in liquid/semi-solid culture medium; contamination
1s controlled while aeration is timed. In addition,
microtubers from TIS can be grown on the field and used
in original seed production programmes. Enhancement
of growth in TIS can to the exploration of medicinal
secondary metabolites production, like yam steroidal
diosgenins (Raju and Rao, 2012). Shoots grown in
TISs had enhanced growth and the leaves had higher
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photosynthetic pigment content than other techniques
(Jova et al., 2011, 2012; Cabrera et al., 2011).

In Vitro Slow Growth Conservation and
Cryopreservation

Slow growth conservation leads to the reduction of loss
risks associated with the field banks, and constitute
a viable alternative to complement and reduce the
large size required for field banks. RTBs genebanks
around the world have in vitro tissue culture facilities
as a complementary conservation system, giving the
possibility to clean the germplasm from diseases and pest
via meristem culture and/or coupled with other cleaning
methods. This conservation method requires technical
expertise, facilities and operating budget. Though, they
are generally more economical and less risky in a long-
term perspective; as compared to field collections. Plant
tissue culture is a powerful tool for safer and faster way
to multiply large quantity of material for distribution,
duplication in other genebanks and international exchange
(easier plant material transport); and also for breeding
purposes. Slow growth storage is however for short to
medium term conservation, after which the plantlets
are subcultured when signs of deterioration/necrosis
are visible (Balogun, 2009). The conservation of RTBs
needs small quantity of material and allows longer
duration between two regenerations or subcultures, using
slow growth storage. The principle is to place the in
vitro plantlets under slow growth conditions, through
adaptation to physical factors (light, temperature, culture
medium, growth retardants). According to Ng and Ng
(1997), 47 countries were holding cassava collections but
only 12 maintained in vitro facilities for conservation.
Many of these laboratories combine in vitro techniques
target for pathogen cleaning with rapid multiplication
and genebank conservation. In vitro conservation of
cassava is still far less common than field conservation.
The largest national in vitro collections are held in Brazil
and Argentina. There appear to be very few RTBs in
vitro genebanks in Africa. International collections are
held at CIAT, CIP, Bioversity International and IITA,
while all other in vitro genebanks have a national or
regional focus.

Cryopreservation, almost systematically associated
with in vitro conservation, is another conservation
method for RTBs germplasm. It allows maintenance
of plant material at ultra-low temperature (in liquid
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nitrogen at -196°C) using cryogenic techniques. At
such low temperature, plant cell biological activities
and metabolism are stopped, eliminating the need
to regularly rejuvenate or regenerate the plant.
It is currently a supplementary tool to improve
conservation of germplasm in a longer-term perspective.
Cryopreservation is the most reliable technique for long-
term storage of plant genetic resources (Popov et al.,
2005). It avoids the disadvantages of irreversible loss
of totipotent competencies caused by in vitro ageing
process (Benson, 2008), time and labour consumption.
Many studies confirmed that it’s economically more
competitive compared to other conservation systems
(Harvengt et al., 2004; Reed et al., 2004a; Keller et al.,
2008). Cryopreservation helps to overcome many of in
vitro maintenance disadvantages such as labour-intensive
sub-culturing, potential elimination of pathogens and
somaclonal variation related to multiple subcultures. It
also ensures the safe long-term conservation of genetic
resources. Thus, cryopreservation techniques have
been increasingly used for long-term storage. In the
last 25 years, several cryogenic techniques have been
developed, especially those based on vitrification method
(the transition of water directly from the liquid phase
into an amorphous or “glassy” phase, whilst avoiding
the formation of crystalline ice) such as encapsulation-
dehydration, preculture-dehydration, and encapsulation/
vitrification. Therefore, the main requirement for using
cryopreservation method is that it should be simple,
economical, reproducible and should allow relatively
high regrowth rate Leunufna and Keller (2003).
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